Signal & Systems

Lecture # 12 Z-Transform -I

31st December 18

Z-Transform

The Z-Transform

• The z-transform of a discrete-time signal x[n] is:

$$
X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}
$$

z

• The z-transform operation is denoted as: *n*=−∞

• Where "z" is the complex number. Therefore, we may write z as: *x*(*n*) \leftrightarrow *X*(*z*)

$$
z=re^{j\omega}
$$

• Where r and ω belongs to Real number. When $r=1$, the z-transform of a discrete-time signal becomes:

$$
X\left(e^{j\omega}\right)=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}
$$

The Z-Transform (cont.)

- Therefore, the DTFT is a special case of the ztransform.
- Pictorially, we can view DTFT as the z-transform evaluated on the unit circle:

• When $r\neq 1$, the z-transform is equivalent to:

$$
X(re^{j\omega})=\sum_{n=-\infty}^{\infty}x[n]\left(re^{j\omega}\right)^{-n}
$$

The Z-Transform (cont.)

$$
= \sum_{n=-\infty}^{\infty} \left(r^{-n} x[n] \right) e^{-j\omega n}
$$

$$
= F \left[r^{-n} x[n] \right]
$$

- Which is the DTFT of the signal r^{-n} x[n].
- However, we know that the DTFT does not always exist. It exists only when the signal is square summable, or satisfies the Dirichlet conditions.
- Therefore, $X(z)$ does not always converge. It converges only for some values of r. this range of r is called the region of convergence (ROC).

Region of Convergence (ROC)

- The region of convergence are the values of for which the z-transform converges.
- Z-transform is an infinite power series which is not always convergent for all values of z.
- Therefore, the region of convergence should be mentioned along with the z-transformation.
- The Region of Convergence (ROC) of the z-transform is the set of z such that $X(z)$ converges, i.e.,

$$
\sum_{n=-\infty}^{\infty} |x[n]| r^{-n} < \infty
$$

Example $\#$ 1

• Z-transform of right-sided exponential sequences. • Consider the signal $x[n] = a^n u[n]$. Mathematically it can be written as:

• This sequence exists for positive values of n:

Example #1 (cont.) • The z-transform of $x[n]$ is given by: ∞ $X(z) = \sum a^n u[n] z^{-n}$ ∑

• Therefore, $X(z)$ converges if $\sum_{n=0}^{n}$ (z) . From geometric series, we know that: $\left(az^{-1}\right)$ *n*=0 $\sum (az^{-1})^n < \infty$

$$
\sum_{n=0}^{\infty} \left(a z^{-1} \right)^n = \frac{1}{1 - a z^{-1}}
$$

−∞

 $= \sum (az^{-1})$

n=0

∑

 $\left(az^{\text{I}}\right)$

∞

n

 $\sum_{n=1}^{\infty}$

Example #1 (cont.) • When $|az^{-1}|<1$, or equivalently $|z|>|a|$. So, 1 $X(z) =$ $1 - az^{-1}$ • With ROC being the set of z such that $|z| > |a|$. As shown below:

Example #2

• Consider the signal: $x[n] = 7\left(\frac{1}{2}\right)$ • The z-transform is: 3 $\sqrt{2}$ ⎝ $\left(\frac{1}{2}\right)$ $\overline{ }$ ⎟ $\binom{n}{u}[n] - 6\left(\frac{1}{2}\right)$ 2 $\sqrt{2}$ $\overline{\mathcal{L}}$ $\left(\frac{1}{2}\right)$ $\overline{ }$ ⎟ *n u*[*n*] *n* $\left(1\right)^n$ $\left(1\right)^n$ ⎤ ∞

$$
X(z) = \sum_{n=-\infty}^{\infty} \left[7\left(\frac{1}{3}\right)^n - 6\left(\frac{1}{2}\right)^n \right] u[n] z^{-n}
$$

Example #2 (cont.)

- For $X(z)$ to converge, both sums in $X(z)$ must converge.
- So we need both $|z| > |1/3|$ and $|z| > |1/2|$. Thus the ROC is the set of z such that $|z| > |1/2|$.

Properties of Z-Transform

Linearity

• This property states that if $x_1(n) \leftrightarrow X_1(z)$ and then: *x*1(*n*) *z* \Longleftrightarrow *X*₁(*z*) $x_2(n)$ *z* $\Longleftrightarrow X_2(z)$

 $a_1x_1(n) + a_2x_2(n) \Leftrightarrow a_1X_1(z) + a_2X_2(z)$ *z*

• Where a_1 and a_2 are constants.

Time Scaling

• This property of z-transform states that if $x(n) \leftrightarrow X(z)$, then we can write: *z* \Longleftrightarrow *X*(*z*)

$$
x(n-k) \Longleftrightarrow z^{-k} X(z)
$$

• Where k is an integer which is shift in time in $x(n)$ in samples.

Scaling in Z-Domain

• This property states that is:

x(*n*) *z* $\left|\sum_{i=1}^{n} X(z) \right| ROC : r_1 < |z| < r_2$

then
$$
a^n x(n) \leq x \left(\frac{z}{a}\right) ROC : |a|r_1 < |z| < |a|r_2
$$

• Where a is a constant.

Time Reversal

• This property states that if:

x(*n*) *z* $\Longleftrightarrow X(z)$ $ROC: r_1 < |z| < r_2$

x(−*n*) *z* $\longleftrightarrow X(z^{-1})$ *ROC* : 1 *r* 1 $< |z|$ 1 $r₂$

Differentiation in Z-Domain • This property states that if $x(n) \leftrightarrow X(z)$, then:

 $nx(n) \Longleftrightarrow -z \frac{d\{X(z)\}}{dz}$

Convolution

• This property states that if $x_1(n) \leftrightarrow x_1(z)$ and $x_2(n) \leftrightarrow x_2(z)$ then: \Longleftrightarrow *X*₁(*z*) and *x*₂(*n*) *z* $\Longleftrightarrow X_2(z)$

z

 $x_1(n) * x_2(n)$ *z* $\Longleftrightarrow X_1(z)X_2(z)$

Example $#3$

• Find the convolution of sequences: $x_1 = \{1, -3, 2\}$ *and* $x_2 = \{1, 2, 1\}$

Solution:

• Step 1: Determine z-transform of individual signal sequences:

$$
X_1(z) = Z[x_1(n)] = \sum_{n=0}^{2} x_1(n)z^{-n} = x_1(0)z^0 + x_1(1)z^{-1} + x_1(2)z^{-2}
$$

$$
= 1z^0 - 3z^{-1} + 2z^{-2} = 1 - 3z^{-1} + 2z^{-2}
$$

and
$$
X_2(z) = Z[x_2(n)] = \sum_{n=0}^{2} x_2(n)z^{-n} = x_2(0)z^0 + x_2(1)z^{-1} + x_2(2)z^{-2}
$$

 $=1z^{0} + 2z^{-1} + 1z^{-2} = 1 + 2z^{-1} + 1z^{-2}$

Example $\#$ 3 (cont.) • Step 2: Multiplication of $X_i(z)$ and $X_2(z)$: $X(z) = X_1(z)X_2(z) = (1-3z^{-1}+2z^{-2})(1+2z^{-1}+1z^{-2})$ $(1+2z+1z^{-})$ $=1-z^{-1}-3z^{-2}+z^{-3}+2z^{-4}$ • Step 3: Let us take inverse z-transform of $X(z)$: $x(n) = IZT\left[1-z^{-1}-3z^{-2}+z^{-3}+2z^{-4}\right]=\left\{1,-1,-3,1,2\right\}$

Other Properties of Z-Transform

Correlation of Two Sequences: • This property states that if $x_1(n) \leftrightarrow X_1(z)$ and $x_2(n) \leftrightarrow X_2(z)$ then: *z* $\Longleftrightarrow X_1(z)$ and $x_2(n) \Longleftrightarrow X_2(z)$ *z z* ∞

$$
\sum_{n=-\infty} x_1(n)x_2(n-m) \stackrel{\sim}{\Longleftrightarrow} X_1(z)X_2(z^{-1})
$$

• Multiplication:

• This property states that if $x_1(n) \leftrightarrow X_1(z)$ and $x_2(n) \leftrightarrow X_2(z)$ then: \Longleftrightarrow *X*₁(*z*) and *x*₂(*n*) *z* $\Longleftrightarrow X_2(z)$ $x_1(n)x_2(n)$ *z* ↔ 1 2^π *j* $X_1(v)X_2$ *z v* $\sqrt{2}$ ⎝ $\left(\frac{z}{z}\right)$ $\overline{ }$ z^{-1} *dv* \oint

c

z

Where C is the closed contour which encloses the origin and lies in the ROC that is common to both $X_1(n)$ and $X_1(v)$ and X_2 $(1/v)$.

• Conjugate of a Complex Sequence:

• This property states that if x (n) is a complex sequence and if $x(n) \leftrightarrow X(z)$ then:

x ∗ (*n*) *z* $\left[X(z^*)\right]$ ∗

• Real Part of a Sequence:

This property states that if $x(n)$ is a complex sequence and if $x(n) \leftrightarrow X(z)$ then: *z* \Longleftrightarrow *X* (z)

$$
\mathrm{Re}\big[x(n)\big] \Longleftrightarrow \frac{1}{2}\big[X(z) + X^*(z^*)\big]
$$

• Imaginary Part of a Sequence:

This property of z-transform states that if $x(n)$ is a complex sequence and if $x(n) \leftrightarrow X(z)$ then: *z* \Longleftrightarrow *X*(*z*)

Im[x(n)]
$$
\Longleftrightarrow
$$
 $\frac{1}{2j}[X(z)-X^*(z^*)]$

- Initial Value The
	- The initial value theorem for a single-sided sequence $x(n)$ is $x(o)$ whereas this is $x(-\infty)$ for double-sided sequence. It is difficult to get this value from the knowledge of onesided z-transform.
	- This theorem states that for a causal sequence $x(n)$, $x(o)$ can be obtained by the knowledge of $X(z)$ i.e., one-sided of $X(z)$ i.e.,

$$
x(0) = \underset{z \to \infty}{\prod} X(z)
$$

• Final Value Theorem:

the final value theorem states that if a sequence $x(n)$ has finite value as n< ∞ , called as $x(\infty)$, then this value can be determined by the knowledge of its one-sided ztransform *i.e.*,

$$
LT_{n\to\infty}x(n) = x(\infty)LT[(z-1)X(z)]
$$

Partial Sum:

 \bullet It states that:

$$
\sum_{-\infty}^{\infty} x(n) \Longleftrightarrow \frac{X(z)}{1-z^{-1}}
$$

• Parseval's Theorem: It states that:

$$
\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi j} \oint_C X_1(v) X_2^*\left(\frac{1}{v}\right) v^{-1} dv
$$

Where $x_1(n)$ and $x_2(n)$ are complex valued sequences.

Example $#_4$

 \bullet Find the initial and final value of $x(n)$ if its ztransform $X(z)$ is given by: • Solution: The initial value $x(0)$ is given by: The final value or steady value of $x(n)$ is given by: $X(z) = \frac{0.5z^2}{z^2}$ $(z-1)(z^2 - 0.85z + 0.35)$ $x(0) =$ $LT(X(z) = L\sum_{z\to\infty}$ $LT \frac{0.5z^2}{(z-1)(z^2-0.8)}$ $(z-1)(z^2-0.85z+0.35)$ = *z*→∞ $LT \frac{0.5z^2}{(z)(z^2)}$ $(z)(z^2)$ $= 0$ $x(\infty) =$ LT [(*z* −1)*X*(*z*)] = $\frac{0.5}{(1 - 0.85 + 0.35)}$ $=1.0$

Standard Z-Transform Pairs

Z-Transform Pairs

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Z-Transform Pairs (cont.)

The End