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�  In	 1822,	 the	French	mathematician	 J.B.J.	 Fourier	had	 first	
studied	 the	 periodic	 function	 and	 published	 his	 famous	
theorem.	

�  It	 states	 that	 any	 periodic	 signal	 can	 be	 resolved	 into	
sinusoidal	components.	

�  Fourier	 series	 is	 the	 resulting	 summation	 of	 harmonic	
sinusoid.	

�  The	signal	can	be	in	time	domain	or	in	frequency	domain.	
�  T	 can	 be	 represented	 either	 in	 the	 form	 of	 infinite	
trigonometric	series	or	in	the	form	of	exponential	series.	

	





�  Fourier	Series	expansion	is	used	for	periodic	signals	to	
expand	 them	 in	 terms	 of	 their	 harmonics	which	 are	
sinusoidal	and	orthogonal	to	one	another.	

� We	have	two	types	of	Fourier	Series	expansion:	
�  Continuous	Time	Fourier	Series	
�  Discrete	Time	Fourier	Series	

�  Fourier	 Series	 is	 used	 for	 analysis	 of	 periodic	 signals	
only.		

�  For	analysis	of	non-periodic	signals	Fourier	Transform	
is	used.	





�  For	analyzing	LTI	systems,	the	signals	can	be	represented	
as	a	linear	combination	of	basic	signals.	

�  Basic	signals	possess	the	following	two	properties:	
�  The	set	of	basic	signals	can	be	used	to	construct	a	broad	and	

useful	class	of	signals.	
�  Should	have	simple	structure	in	LTI	system	response.	

�  Both	 of	 these	 properties	 are	 provided	 by	 the	 set	 of	
complex	 exponential	 signals	 in	 continuous	 and	 discrete	
time.	

�  The	 response	of	 an	LTI	 system	 to	 a	 complex	 exponential	
input	is	the	same	complex	exponential	with	only	a	change	
in	amplitude.	



�  For	Continuous	time:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	where	H(s)	is	a	
function	of	s.	

�  For	Discrete	time:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	where	H(z)	is	a	
function	of	z.	

est →H s( )est

zn →H z( ) zn



�  If	the	output	is	a	scaled	version	of	its	input,	then	the	
input	 function	 is	 called	 an	 Eigen-function	 of	 the	
system.		

�  The	 scaling	 factor	 is	 called	 the	 eigenvalue	 of	 the	
system.	



�  Consider	 an	 LTI	 system	 with	 impulse	 response	 h(t)	
and	input	signal	x(t).	

�  Suppose	 that	x(t)	=	est	 for	 some	s	belongs	 to	C,	 then	
the	output	is	given	by:	

y t( ) = h t( )∗ x t( ) = h τ( ) x t −τ( )dτ
−∞

∞

∫

= h τ( )es t−τ( ) dτ
−∞

∞

∫

= est h τ( )e−sτ dτ
−∞

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥= H s( )est = H s( ) x t( )



� Where	H(s)	is	defined	as:	
�  From	the	above	derivation	we	see	that	 if	 the	input	 is	
x(t)	 =	 est,	 then	 the	 output	 is	 a	 scaled	 version	 y(t)	 =	
H(s)	est	.	

�  Therefore,	using	the	definition	 	of	Eigenfunction,	we	
show	that:	
�  est	 is	 an	 Eigenfunction	 of	 any	 continuous-time	 LTI	
system	

�  H(s)	is	the	corresponding	eigenvalue.	

H s( ) = h τ( )e−sτ dτ
−∞

∞

∫



�  Considering	 the	 subclass	 of	 periodic	 complex	
exponentials	 of	 the	 ejωt,	 ω	 belongs	 to	 R	 by	 setting	
s=jω,	then:	

�  H(jω)	is	called	the	frequency	response	of	the	system.	
	

H s( ) s= jω = H jω( ) = h τ( )e− jωτ dτ
−∞

∞

∫



�  In	 parallel	 manner	 we	 can	 show	 that	 complex	
exponential	sequences	are	Eigenfunctions	of	discrete-
time	LTI	systems.	

�  Suppose	tat	the	impulse	response	is	given	by	h[n]	and	
the	input	is	x[n]=zn,	then	the	output	y[n]	is:	

� Where:	

y n[ ] = h n[ ]∗ x n[ ] = h k[ ] x n− k[ ]
k=−∞

∞

∑

= h k[ ] z n−k[ ]

k=−∞

∞

∑ = zn h k[ ] z−k
k=−∞

∞

∑ = H z( ) zn

H z( ) = h k[ ] z−k
k=−∞

∞

∑



�  This	result	indicates:	
�  zn	is	an	Eigenfunction	of	a	discrete-time	LTI	system	
�  H(z)	is	the	corresponding	eigenvalue.	

�  Considering	the	subclass	of	periodic	complex	exponentials	
e-j(2π/N)n	by	setting	z=	ej2π/N,	we	have:	

�  And	H(ejΩ)	is	called	the	frequency	response	of	the	system.	

H z( ) z=e jΩ = H ejΩ( ) = h k[ ]e− jΩk
k=−∞

∞

∑

where Ω =
2π
N



�  The	usefulness	of	Eigenfunctions	can	be	seen	from	an	
example.	

�  Lets	consider	a	signal	x(t):	

�  According	 to	 the	Eigenfunction	 analysis	 ,	 the	output	
of	each	complex	exponential	is:	

x t( ) = a1es1t + a2es2t + a3es3t

es1t →H s1( )es1t

es2t →H s2( )es2t

es3t →H s3( )es3t



�  From	the	 superposition	property	 the	 response	 to	 the	
sum	is	the	sum	of	the	responses,	so	that:	

�  The	 result	 implies	 that	 if	 the	 input	 is	 a	 linear	
combination	 of	 complex	 exponentials,	 the	 output	 of	
an	 LTI	 system	 is	 an	 infinite	 sum	 of	 complex	
exponentials.	

� More	 generally,	 if	 x(t)	 is	 an	 infinite	 sum	of	 complex	
exponentials,	

y t( ) = a1H s1( )e s1t +a2H s2( )e s2t +a3H s3( )e s3t

x t( ) = ake
skt

k=−∞

∞

∑



�  Then	the	output	is:	
�  Similarly	for	discrete-time	signals,	if:	

�  This	 is	 an	 important	 observation,	 because	 as	 long	 as	
we	can	express	a	signal	x(t)	as	a	linear	combination	of	
Eigenfunctions,	 then	 the	 output	 y(t)	 can	 be	 easily	
determined	by	looking	at	the	transfer	function.	Same	
goes	for	discrete-time.	

�  The	transfer	function	is	fixed	for	an	LTI	system.	

y t( ) = akH sk( )eskt
k=−∞

∞

∑

x n[ ] = akzk
n

k=−∞

∞

∑

then

y n[ ] = akH zk( ) zkn
k=−∞

∞

∑





�  According	 to	 the	 definition	 of	 periodic	 signals:	 x(t)	 =	
x(t+T)	 with	 fundamental	 period	 T	 and	 fundamental	
frequency	ω0=2π/T.	

�  We	 have	 also	 discussed	 two	 basic	 signals,	 the	 sinusoidal	
signal:	 x(t)=cosω0t	 and	 the	 periodic	 complex	 exponential	
x(t)	=	ejωot.	

�  Both	 of	 these	 signals	 are	 periodic	 with	 fundamental	
frequency	ω0	and	the	fundamental	period	T=2π/ω0.	

�  Harmonically	related	complex	exponentials:	

�  Each	 harmonic	 has	 fundamental	 frequency	 which	 is	
multiple	of	ω0	.	

φk t( ) = e jkω0t = e
jk 2π /T( )t,k = 0,±1,±2,......



�  A	 Linear	 combination	 of	 harmonically	 related	
complex	exponentials:	

�  Above	equation	is	also	periodic	with	period	T.		
�  k=±1	have	fundamental	frequency	ω0	(first	harmonic)	
�  k=±N	 have	 fundamental	 frequency	 Nω0	 (Nth	
harmonic)	

x t( ) = ake
jkω0t

k=−∞

∞

∑ = ake
jk 2π /T( )t

k=−∞

∞

∑



�  Theorem:	 The	 continuous-time	 Fourier	 series	
coefficients	ak	of	the	signal:	

�  Is	given	by:	

�  Proof:	
�  Let	us	consider	the	signal:	

x t( ) = ake
jkω0t

k=−∞

∞

∑ , Synthesis Equation

ak =
1
T

x t( )e− jkω0t dt
T
∫ , Analysis Equation

x t( ) = ake
jkω0t

k=−∞

∞

∑



�  If	we	multiply															on	both	sides,	then	we	have:	

�  Integrating	 both	 sides	 from	 0	 to	 T	 yields:	 (T	 is	 the	
fundamental	period	of	x(t)	)		

e− jnω0t

x t( )e− jnω0t = ake
jkω0t

k=−∞

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥e− jnω0t = ake

j k−n( )ω0t

k=−∞

∞

∑

x t( )e− jnω0t dt
0

T

∫ = ake
j k−n( )ω0t

k=−∞

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥dt

0

T

∫

= ak e j k−n( )ω0t dt
0

T

∫
⎡

⎣
⎢

⎤

⎦
⎥

k=−∞

∞

∑



�  Use	Euler’s	formula:	

�  For	 k≠n,	 cos(k-n)ω0t	 and	 sin(k-n)ω0t	 are	 periodic	
sinusoids	with	fundamental	period	(T/|k-n|)	

�  Therefore:	

�  This	result	 is	known	as	the	orthogonality	of	complex	
exponentials.	

	

e j k−n( )ω0t dt
0

T

∫ = cos k − n( )ω0t( )dt
0

T

∫ + j sin k − n( )ω0t( )dt
0

T

∫

1
T

e j k−n( )ω0t dt
0

T

∫ =
1 if k = n

0 otherwise

⎧
⎨
⎪

⎩⎪



�  Using	above	equation	we	have:	
	

� Which	is	equivalent	to:	
	

�  Dc	or	constant	component	of	x(t):	

x t( )e− jnω0t dt
0

T

∫ = Tan

an =
1
T

x t( )e− jnω0t dt
0

T

∫

a0 =
1
T

x t( )dt
T
∫



�  Consider	the	signal:	
�  The	 period	 of	 x(t)	 is	 T=2,	 so	 the	 fundamental	
frequency	is	ω0=2π/T=π.	

�  Recall	Euler’s	formula	ejθ	=	cosθ	+	jsinθ,	we	have:	

x t( ) =1+ 1
2
cos2π t + sin3π t

x t( ) =1+ 1
4
e j2π t + e− j2π t⎡⎣ ⎤⎦+

1
2 j

e j3π t − e− j3π t⎡⎣ ⎤⎦

a0 =1, a1 = a−1 = 0, a2 = a−2 =
1
4
, a3 =

1
2 j
, a−3 = −

1
2 j

and ak = 0 otherwise





�  To	 understand	 the	 validity	 of	 Fourier	 Series	
representation,	 lets	 examine	 the	 problem	 of	
approximation	a	given	periodic	signal	x(t)	by	a	linear	
combination	 of	 a	 finite	 number	 of	 harmonically	
related	complex	exponentials.		

�  That	is	by	finite	series	of	the	form:	

�  Let	eN(t)	denote	the	approximation	error;	i.e.,			

xN t( ) = ake
jkω0t

k=−N

N

∑

eN t( ) = x t( )− xN t( ) = x t( )− ake
jkω0t

k=−N

N

∑



�  The	 criterion	 that	 we	 will	 use	 is	 the	 energy	 in	 the	 error	
over	one	period:	

�  To	achieve	min	EN,	one	should	define:	

�  As	N	increases,	EN	decreases	and	as	Nè∞	EN	is	zero.	
�  If	ak	è∞	the	approximation	will	diverge.	
�  Even	 for	 bounded	 ak	 the	 approximation	 may	 not	 be	
applicable	for	all	periodic	signals.	

EN t( ) = eN t( )
2
dt

T
∫

ak =
1
T

x t( )e− jkω0t dt
T
∫



�  Energy	of	signal	should	be	a	finite	in	a	period:	

�  This	condition	only	guarantees	ENè0.	
�  It	 does	 not	 guarantee	 that	 x(t)	 equals	 to	 its	 Fourier	
series	at	each	moment	t.	

x t( )
2
dt

T
∫ <∞



�  Condition#1:	
�  Signal	 should	 have	 finite	 number	 of	 maxima	 and	
minima	over	the	range	of	time	period.	



�  Condition	#2:	
�  Signal	should	have	finite	number	of	discontinuities	over	
the	range	of	time	period.	



�  Condition	#3:	
�  Signal	should	be	absolutely	integrable	over	the	range	if	
time	period.	




