Signal & Systems

Lecture # 8 Fourier Series-II

20th December 18

Discrete Time Periodic Signals

Fourier Series Representation of DT

• The Fourier series representation of discrete-time periodic signal is finite as opposed to the infinite series representation required for continuous-time periodic signals.

Linear Combinations of Harmonically **Related Complex Exponentials** • A discrete-time signal $x[n]$ is periodic with period N if: $x[n] = x[n+N]$.

• The fundamental period is the smallest positive N and the fundamental frequency is $\omega_0 = \frac{2\pi}{N}$. . The set of all discrete-time complex exponential signals that are periodic with period N is given by: *N*

 $\phi_k[n] = e^{jk\omega_0 n} = e^{jk(2\pi/N)n}, \quad k = 0, \pm 1, \pm 2, \dots$

• All of these signals have fundamental frequencies that are multiples of $2\pi/N$ and thus are harmonically related.

Linear Combinations of Harmonically Related Complex Exponentials (cont.)

- There are only N distinct signals in the set this is because the discrete-time complex exponentials which differ in frequency by a multiple of 2π are $\text{identical. That is:} \quad \phi_k \lfloor n \rfloor = \phi_{k+rN} \lfloor n \rfloor$
- The representation of periodic sequences in terms of linear combinations of the sequences $\Phi_k[n]$ is:

$$
x[n] = \sum a_k \phi_k[n] = \sum a_k e^{jk\omega_0 n} = \sum a_k e^{jk(2\pi/N)n}
$$

• Since the sequences $\Phi_k[n]$ are distinct over a range of N successive values of k , the summation in above equation need include terms over this range.

Linear Combinations of Harmonically Related Complex Exponentials (cont.)

• Thus the summation is on k as k varies over a range of N successive integers beginning with any value of k. • We indicate this by expressing the limits of the summation as $k=$. That is:

$$
x[n] = \sum_{k \in \langle N \rangle} a_k \phi_k[n] = \sum_{k \in \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k \in \langle N \rangle} a_k e^{jk(2\pi/N)n}
$$

Discrete-Time Fourier Series Coefficients

2

 $\sum |x[n]|^2 < \infty$

n=−∞

∞

- Assuming $x[n]$ is square-summable i.e., $\sum |x[n]|^2 < \infty$ or $x[n]$ satisfies the Dirichlet conditions.
- In this case we have:

 $x[n] = \sum a_k e^{jk\omega_0 n} = \sum a_k e^{jk(2\pi/N)n}$, *Synthesis Equation* $k = \langle N$ k = $\langle N$

 $a_k = \frac{1}{\lambda}$ *N* $x[n]e^{-jk\omega_0 n}$ $n = \langle N \rangle$ $\sum_{n=N} x[n]e^{-jk\omega_0 n} = \frac{1}{N}$ $x[n]e^{-jk(2\pi/N)n}$ $n = \langle N \rangle$ $\sum x[n]e^{-jk(2\pi/N)n}$, Analysis Equation

· As in continuous time, the discrete-time Fourier series coefficient a_k are often referred to as the spectral coefficients of $x[n]$.

• These coefficients specify a decomposition of $x[n]$ into a sum of N harmonically related complex exponentials.

Example #1

• Consider the signal:

 $x[n] = \sin \omega_0 n$

• Which is the discrete-time counterpart of the signal. • x[n] is periodic only if $2\pi/\omega_0$ is an integer or a ratio of integers.

Example #2

• The signal $x[n] = sin(2\pi n/3)$ is periodic with fundamental period $N_0=3$. calculate the DTFS coefficients.

Properties of Fourier Series Coefficients

Linearity

• For continuous-time Fourier series, we have: $x_1(t) \leftrightarrow a_k$ *and* $x_2(t) \leftrightarrow b_k$ $Ax_1(t) + Bx_2(t) \Leftrightarrow Aa_k + Bb_k$

• For Discrete-time case, we have: $x_1(t) \leftrightarrow a_k$ *and* $x_2(t) \leftrightarrow b_k$ $Ax_1(t) + Bx_2(t) \Leftrightarrow Aa_k + Bb_k$

Time Shift $x(t-t_0) \leftrightarrow a_k e^{-jk\omega_0 t_0}$ $x[n - n_0] \leftrightarrow a_k e^{-jk\Omega_0 n_0}$

• Proof: Let us consider the Fourier series coefficient b_k of the signal $y(t)=x(t-t_0)$. $b_k=\frac{1}{T}$ • Letting $\tau = t-t_0$ in the integral, we obtain: *T* $\int x(t-t_0)e^{-j\omega_0t} dt$

$$
\frac{1}{T}\int\limits_T^1 x(\tau)e^{-jk\omega_0(\tau+t_0)}\,dt=e^{-jk\omega_0t_0}\frac{1}{T}\int\limits_T^1 x(\tau)e^{-jk\omega_0\tau}\,dt
$$

where $x(t) \leftrightarrow a_k$. *Therefore*,

$$
x(t-t_0) \leftrightarrow a_k e^{-jk\omega_0 t_0}
$$

Time Reversal

$$
x(-t) \leftrightarrow a_{-k}
$$

 $x[-n] \leftrightarrow a_{-k}$

• Proof: Consider a signal $y(t) = x(-t)$. The Fourier series representation of $x(-t)$ is: $x(-t) = \sum a_k e^{-jk2\pi t/T}$ ∞ ∑

• Letting $k = -m$, we have:

• Thus:

$$
y(t) = x(-t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{jm2\pi t/T}
$$

−∞

 $x(-t) \Leftrightarrow a_{-k}$

Time Scaling

• Time scaling is an operation that in general changes the period of the underlying signal. • Specifically if $x(t)$ is periodic with period T and fundamental frequency $\omega_0=2\pi/T$, then $x(\alpha t)$, where α is a positive real number, is periodic with period T/α and fundamental frequency αω.

Properties of Continuous-Time Fourier Series

Multiplication:

Suppose that $x(t)$ and $y(t)$ are both periodic with period T and that: $x(t) \Leftrightarrow a_k$

 $v(t) \leftrightarrow b_k$

Since the product $x(t)$ $y(t)$ is also periodic with period T, we can expand it in a Fourier series with Fourier series coefficients h_k expressed in terms of those for $x(t)$ and $y(t)$. The result is:

$$
x(t)y(t) \Longleftrightarrow h_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}
$$

The sum on the R.H.S may be interpreted as the Discretetime convolution of the sequence $x(t)$ and $y(t)$.

Properties of Continuous-Time Fourier Series (cont.)

• Conjugation and Conjugate Symmetry: • Real $x(t) \leftrightarrow a_{-k} = a_k^*$ (conjugate symmetric) *k*

• Real & Even $x(t) \leftrightarrow a_k = a_k^*$ (real and even a_k) *k*

• Real & Odd $x(t) \leftrightarrow a_k = -a_k^*$ (purely imaginary and odd a_k), $a_0=0$ *k*

• Even part of $x(t) \leftrightarrow \text{Re}\{a_k\}$

 \bullet Odd part of $x(t) \leftrightarrow j \text{Im} \{a_k\}$

Properties of Continuous-Time Fourier Series (cont.)

• Parseval's Relation:

• Parseval's relation for continuous-time periodic signal is:

$$
\frac{1}{T}\int_{T} \left|x(t)\right|^2 dt = \sum_{k=-\infty}^{\infty} \left|a_k\right|^2
$$

• Where a_k are the Fourier series coefficients of $x(t)$ and T is the period of the signal.

• L.H.S of the above equation is the average power (i.e., energy per unit time) in one period of the periodic signal $x(t)$. Also:

$$
\frac{1}{T} \int_{T} \left| a_{k} e^{jk\omega_{0}t} \right|^{2} dt = \frac{1}{T} \int_{T} \left| a_{k} \right|^{2} dt = \left| a_{k} \right|^{2}
$$

So that $|a_k|^2$ is the average power in the kth harmonic component of $x(t)$.

Thus Parseval's relation states that the total average power
in a periodic signals equals the sum of the average powers in all of its harmonic components.

Properties of Discrete-Time Fourier Series

• Multiplication:

In discrete-time, suppose that: $x[n] \Leftrightarrow a_k$ *and* $y[n] \leftrightarrow b_k$

Are both periodic with period N. then the product $x[n]$ $y[n]$ is also periodic with period N. Its Fourier coefficients d_k are given by:

$$
x[n]y[n] \leftrightarrow d_k = \sum_{l=\langle N\rangle} a_l b_{k-l}
$$

The result is a periodic convolution between the FS sequences. $w[n]$ is periodic with N.

Properties of Discrete-Time Fourier Series (cont.)

• First Difference:

If $x[n]$ is periodic with period N, then so is $y[n]$, since shifting $x[n]$ or linearly combining $x[n]$ with another periodic signal whose period is N always results in a periodic signal with period N. Also, if: $x[n] \leftrightarrow a_k$

Then the Fourier coefficients corresponding to the first difference of $x[n]$ may be expressed as:

$$
x[n] - x[n-1] \leftrightarrow \left(1 - e^{-jk(2\pi/N)}\right) a_k
$$

Properties of Discrete-Time Fourier Series (cont.)

Parseval's Relation:

Parseval's relation for discrete-time periodic signals is given by:

$$
\frac{1}{N}\sum_{n=\langle N\rangle}\big|x[n]\big|^2=\sum_{n=\langle N\rangle}\big|a_k\big|^2
$$

The average power in a periodic signal $=$ the sum of the average power in all of its harmonic components.

Fourier Series & LTI Systems

Fourier Series & LTI Systems

• The response of a continuous-time LTI system with impulse response $h(t)$ to a complex exponential signal e^{st} is the same complex exponential multiplied by a complex gain: $y(t) = H(s)e^{st}$

where

$$
H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau
$$

In particular, for s=j ω , the output is y(t)=H(j ω)e^{jωt}. • The complex functions $H(s)$ and $H(j\omega)$ are called the system function (or transfer function) and the frequency response, respectively.

Fourier Series & LTI Systems (cont.)

• By superposition, the output of an LTI system to a periodic signal represented by a Fourier series:

$$
x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t} \quad \text{is} \quad given \quad by
$$

$$
y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}
$$

• That is, the Fourier series coefficients b_k of the periodic output $y(t)$ are given by:

$$
b_k = a_k H(jk\omega_0)
$$

• Similarly, for discrete time signals and systems, response h[n] to a complex exponential signal $e^{j\omega n}$ is the same complex exponential multiplied by a complex gain:

Fourier Series & LTI Systems (cont.)

$$
y[n] = H(jk\omega_0)e^{jk\omega_0 n}
$$

where

$$
H\left(e^{j\omega}\right)=\sum_{n=-\infty}^{\infty}h[n]e^{-j\omega n}
$$

Example #3

• Suppose that the periodic signal $\mathcal{L}(t) = \sum_{k=3}^{n} a_k c_k$ with a_0 =1, a_1 = a_1 =1/4, a_2 = a_2 =1/2, and a_3 = a_3 =1/3 is the input signal to an LTI system with impulse response $h(t)=e^{-t}$ $u(t)$. $x(t) = \sum a_k e^{jk2\pi t}$ *k*=−3 ∑

3

The End