Signal & Systems

Lecture # 8 Fourier Series-II

20th December 18

Discrete Time Periodic Signals

Fourier Series Representation of DT

 The Fourier series representation of discrete-time periodic signal is finite as opposed to the infinite series representation required for continuous-time periodic signals.

Linear Combinations of Harmonically Related Complex Exponentials

- A discrete-time signal x[n] is periodic with period N if: x[n] = x[n+N].
- The fundamental period is the smallest positive N and the fundamental frequency is ω₀ = ^{2π}/_N.
 <u>The set of all discrete-time complex exponential</u>

signals that are periodic with period N is given by:

 $\phi_k[n] = e^{jk\omega_0 n} = e^{jk(2\pi/N)n}, \quad k = 0, \pm 1, \pm 2, \dots$

• All of these signals have fundamental frequencies that are multiples of $2\pi/N$ and thus are harmonically related.

Linear Combinations of Harmonically Related Complex Exponentials (cont.)

• There are only N distinct signals in the set this is because the discrete-time complex exponentials which differ in frequency by a multiple of 2π are identical. That is: $\phi_k[n] = \phi_{k+rN}[n]$

 The representation of periodic sequences in terms of linear combinations of the sequences Φ_k[n] is:

$$x[n] = \sum_{k} a_k \phi_k[n] = \sum_{k} a_k e^{jk\omega_0 n} = \sum_{k} a_k e^{jk(2\pi/N)}$$

 Since the sequences Φ_k[n]^k are distinct over a range of N successive values of k, the summation in above equation need include terms over this range.

Linear Combinations of Harmonically Related Complex Exponentials (cont.)

Thus the summation is on k as k varies over a range of N successive integers beginning with any value of k.
We indicate this by expressing the limits of the summation as k=<N>. That is:

$$x[n] = \sum_{k = \langle N \rangle} a_k \phi_k[n] = \sum_{k = \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k = \langle N \rangle} a_k e^{jk(2\pi/N)n}$$

Discrete-Time Fourier Series Coefficients

 $n = -\infty$

or

- Assuming x[n] is square-summable i.e., $\sum |x[n]|^2 < \infty$ x[n] satisfies the Dirichlet conditions.
- In this case we have:

 $x[n] = \sum_{k = \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k = \langle N \rangle} a_k e^{jk(2\pi/N)n}, \quad Synthesis \quad Equation$

 $a_{k} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_{0}n} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}, \quad \text{Analysis} \quad \text{Equation}$

• As in continuous time, the discrete-time Fourier series coefficient ak are often referred to as the spectral coefficients of x[n].

• These coefficients specify a decomposition of x[n] into a sum of N harmonically related complex exponentials.

Example #1

• Consider the signal:

 $x[n] = \sin \omega_0 n$

Which is the discrete-time counterpart of the signal.
x[n] is periodic only if 2π/ω_o is an integer or a ratio of integers.

Example #2

• The signal $x[n] = sin(2\pi n/3)$ is periodic with fundamental period $N_o=3$. calculate the DTFS coefficients.

Properties of Fourier Series Coefficients

Linearity

• For continuous-time Fourier series, we have: $x_1(t) \Leftrightarrow a_k \quad and \quad x_2(t) \Leftrightarrow b_k$ $Ax_1(t) + Bx_2(t) \Leftrightarrow Aa_k + Bb_k$

• For Discrete-time case, we have: $x_1(t) \Leftrightarrow a_k \quad and \quad x_2(t) \Leftrightarrow b_k$ $Ax_1(t) + Bx_2(t) \Leftrightarrow Aa_k + Bb_k$

Time Shift $x(t-t_0) \Leftrightarrow a_k e^{-jk\omega_0 t_0}$ $x[n-n_0] \Leftrightarrow a_k e^{-jk\Omega_0 n_0}$

Proof: Let us consider the Fourier series coefficient b_k of the signal y(t)=x(t-t_o). b_k = 1/T ∫ x(t-t₀)e^{-jω₀t} dt
Letting τ = t-t_o in the integral, we obtain:

$$\frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_0(\tau+t_0)} dt = e^{-jk\omega_0 t_0} \frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_0 \tau} dt$$

where $x(t) \Leftrightarrow a_k$. Therefore,

 $x(t-t_0) \nleftrightarrow a_k e^{-jk\omega_0 t_0}$

Time Reversal

$$x(-t) \Leftrightarrow a_{-k}$$

 $x[-n] \Leftrightarrow a_{-k}$

• Proof: Consider a signal y(t) = x(-t). The Fourier series representation of x(-t) is: $x(-t) = \sum_{k=1}^{\infty} a_k e^{-jk2\pi t/T}$

• Letting k = -m, we have:

• Thus:

$$y(t) = x(-t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{jm2\pi t/T}$$

$$x(-t) \Leftrightarrow a_{-k}$$

Time Scaling

- Time scaling is an operation that in general changes the period of the underlying signal.
- Specifically if x(t) is periodic with period T and fundamental frequency $\omega_0 = 2\pi/T$, then $x(\alpha t)$, where α is a positive real number, is periodic with period T/ α and fundamental frequency $\alpha \omega_0$.

Properties of Continuous-Time Fourier Series

• Multiplication:

Suppose that x(t) and y(t) are both periodic with period T and that: $x(t) \leftrightarrow a_k$

 $v(t) \Leftrightarrow b_k$ Since the product x(t) y(t) is also periodic with period T, we can expand it in a Fourier series with Fourier series coefficients h_k expressed in terms of those for x(t) and y(t). The result is:

$$x(t)y(t) \Leftrightarrow h_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$$

The sum on the R.H.S may be interpreted as the Discretetime convolution of the sequence x(t) and y(t).

Properties of Continuous-Time Fourier Series (cont.)

<u>Conjugation and Conjugate Symmetry:</u>
 <u>Real</u> x(t) ⇔ a_{-k} = a^{*}_k (conjugate symmetric)

Real & Even $x(t) \Leftrightarrow a_k = a_k^*$ (real and even a_k)

Real & Odd $x(t) \Leftrightarrow a_k = -a_k^*$ (purely imaginary and odd a_k), $a_0 = 0$

Even part of $x(t) \leftrightarrow \operatorname{Re}\{a_k\}$

• Odd part of $x(t) \leftrightarrow j \operatorname{Im} \{a_k\}$

Properties of Continuous-Time Fourier Series (cont.)

• Parseval's Relation:

Parseval's relation for continuous-time periodic signal is:

$$\frac{1}{T}\int_{T} \left| x(t) \right|^2 dt = \sum_{k=-\infty}^{\infty} \left| a_k \right|^2$$

Where a_k are the Fourier series coefficients of x(t) and T is the period of the signal.

L.H.S of the above equation is the average power (i.e., energy per unit time) in one period of the periodic signal x(t). Also: 1.6 $x^{2} = 1.6 x^{2}$

$$\frac{1}{T} \int_{T} \left| a_{k} e^{jk\omega_{0}t} \right|^{2} dt = \frac{1}{T} \int_{T} \left| a_{k} \right|^{2} dt = \left| a_{k} \right|^{2}$$

So that $|a_k|^2$ is the average power in the kth harmonic component of x(t).

Thus Parseval's relation states that the total average power in a periodic signals equals the sum of the average powers in all of its harmonic components.

Properties of Discrete-Time Fourier Series

• <u>Multiplication:</u>

In discrete-time, suppose that:

 $x[n] \nleftrightarrow a_k$ and $y[n] \nleftrightarrow b_k$

Are both periodic with period N. then the product x[n] y[n] is also periodic with period N. Its Fourier coefficients d_k are given by: $x[n]y[n] \Leftrightarrow d_k = \sum a_l b_{k-l}$

The result is a periodic convolution between the FS sequences. w[n] is periodic with N.

Properties of Discrete-Time Fourier Series (cont.)

• First Difference:

If x[n] is periodic with period N, then so is y[n], since shifting x[n] or linearly combining x[n] with another periodic signal whose period is N always results in a periodic signal with period N. Also, if: $x[n] \leftrightarrow a_k$

Then the Fourier coefficients corresponding to the first difference of x[n] may be expressed as:

$$x[n] - x[n-1] \nleftrightarrow \left(1 - e^{-jk(2\pi/N)}\right) a_k$$

Properties of Discrete-Time Fourier Series (cont.)

Parseval's Relation:

Parseval's relation for discrete-time periodic signals is given by:

$$\frac{1}{N}\sum_{n=\langle N\rangle} \left|x[n]\right|^2 = \sum_{n=\langle N\rangle} \left|a_k\right|^2$$

The average power in a periodic signal = the sum of the average power in all of its harmonic components.

Fourier Series & LTI Systems

Fourier Series & LTI Systems

• The response of a continuous-time LTI system with impulse response h(t) to a complex exponential signal est is the same complex exponential multiplied by a complex gain: $y(t) = H(s)e^{st}$

where

$$H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$$

• In particular, for s=j ω , the output is y(t)=H(j ω)e^{j ω t}.

 The complex functions H(s) and H(jω) are called the system function (or transfer function) and the frequency response, respectively.

Fourier Series & LTI Systems (cont.)

• By superposition, the output of an LTI system to a periodic signal represented by a Fourier series:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t} \quad is \quad given \quad by$$
$$y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$$

 That is, the Fourier series coefficients b_k of the periodic output y(t) are given by:

$$b_k = a_k H(jk\omega_0)$$

 $k = -\infty$

 Similarly, for discrete time signals and systems, response h[n] to a complex exponential signal e^{jωn} is the same complex exponential multiplied by a complex gain:

Fourier Series & LTI Systems (cont.)

$$y[n] = H(jk\omega_0)e^{jk\omega_0n}$$

where

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$$

Example #3

Suppose that the periodic signal $x(t) = \sum_{k=-3} a_k e^{jk2\pi t}$ with $a_0=1, a_1=a_{-1}=1/4, a_2=a_{-2}=1/2$, and $a_3=a_{-3}=1/3$ is the input signal to an LTI system with impulse response $h(t)=e^{-t}$ u(t).

The End