Signal & Systems

Lecture # 9 Fourier Series - II

Properties of Fourier Series

Linearity

• For continuous-time Fourier series, we have:

$$x_1(t) \Leftrightarrow a_k \quad and \quad x_2(t) \Leftrightarrow b_k$$

$$Ax_1(t) + Bx_2(t) \Leftrightarrow Aa_k + Bb_k$$

• For Discrete-time case, we have:

$$x_1[n] \Leftrightarrow a_k \quad and \quad x_2[n] \Leftrightarrow b_k$$

$$Ax_1[n] + Bx_2[n] \Leftrightarrow Aa_k + Bb_k$$

Time Shift

$$x(t-t_0) \Leftrightarrow a_k e^{-jk\omega_0 t_0}$$
$$x[n-n_0] \Leftrightarrow a_k e^{-jk\Omega_0 n_0}$$

• Proof: Let us consider the Fourier series coefficient bk of the signal y(t)=x(t-to).

$$b_k = \frac{1}{T} \int_T x(t - t_0) e^{-j\omega_0 t} dt$$

• Letting τ = t-to in the integral, we obtain:

$$\frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_{0}(\tau+t_{0})} dt = e^{-jk\omega_{0}t_{0}} \frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_{0}\tau} dt$$

$$where \quad x(t) \iff a_{k}. \quad Therefore,$$

$$x(t-t_{0}) \iff a_{k}e^{-jk\omega_{0}t_{0}}$$

Time Reversal

$$x(-t) \Leftrightarrow a_{-k}$$
$$x[-n] \Leftrightarrow a_{-k}$$

• Proof: Consider a signal y(t) = x(-t). The Fourier series representation of x(-t) is:

$$x(-t) = \sum_{k=0}^{\infty} a_k e^{-jk2\pi t/T}$$

• Letting k = -m, we have:

$$y(t) = x(-t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{jm2\pi t/T}$$

• Thus:

$$x(-t) \Leftrightarrow a_{-k}$$

Time Scaling

- Time scaling is an operation that in general changes the period of the underlying signal.
- Specifically if x(t) is periodic with period T and fundamental frequency $\omega o = 2\pi/T$, then $x(\alpha t)$, where α is a positive real number, is periodic with period T/α and fundamental frequency $\alpha \omega o$.

Multiplication

- Continous-Time Fourier Series:
 - Suppose that x(t) and y(t) are both periodic with period T and that:

$$x(t) \Leftrightarrow a_k$$

$$v(t) \Leftrightarrow b_k$$

• Since the product x(t) y(t) is also periodic with period T, we can expand it in a Fourier series with Fourier series coefficients h_k expressed in terms of those for x(t) and y(t). The result is:

 $x(t)y(t) \Leftrightarrow h_k = \sum_{l=-\infty} a_l b_{k-l}$

 The sum on the R.H.S may be interpreted as the Discretetime convolution of the sequence x(t) and y(t).

Multiplication (cont.)

- Discrete-Time Fourier Series:
 - In discrete-time, suppose that:

$$x[n] \Leftrightarrow a_k$$
and
$$y[n] \Leftrightarrow b_k$$

- Are both periodic with period N. then the product x[n] y[n] is also periodic with period N.
- Its Fourier coefficients d_k are given by:

$$x[n]y[n] \Leftrightarrow d_k = \sum_{l=\langle N \rangle} a_l b_{k-l}$$

- The result is a periodic convolution between the FS sequences.
- w[n] is periodic with N.

Conjugation & Conjugate Symmetry

- Continuous-Time Fourier Series:
 - Real $x(t) \Leftrightarrow a_{-k} = a_k^*$ (conjugate symmetric)
 - Real & Even $x(t) \Leftrightarrow a_k = a_k^*$ (real and even a_k)
 - Real & Odd $x(t) \Leftrightarrow a_k = -a_k^*$ (purely imaginary and odd a_k), $a_0 = 0$
 - Even part of $x(t) \Leftrightarrow \operatorname{Re}\{a_k\}$
 - Odd part of $x(t) \Leftrightarrow j \operatorname{Im}\{a_k\}$

Parseval's Relation

- Continuous-Time Fourier Series:
 - Parseval's relation for continuous-time periodic signal is:

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |a_{k}|^{2}$$

- Where a_k are the Fourier series coefficients of x(t) and T is the period of the signal.
- L.H.S of the above equation is the average power (i.e., energy per unit time) in one period of the periodic signal x(t).
- Also: Also: $\frac{1}{T} \int_{T} |a_k e^{jk\omega_0 t}|^2 dt = \frac{1}{T} \int_{T} |a_k|^2 dt = |a_k|^2$ So that $|a_k|^2$ is the average power in the kth harmonic component
- of x(t).
- Thus Parseval's relation states that the total average power in a periodic signals equals the sum of the average powers in all of its harmonic components.

Parseval's Relation (cont.)

- Discrete-Time Fourier Series:
 - Parseval's relation for discrete-time periodic signals is given by: $\frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2 = \sum_{n=\langle N \rangle} |a_k|^2$

 The average power in a periodic signal = the sum of the average power in all of its harmonic components.

First Difference

- Discrete-Time Fourier Series:
 - If x[n] is periodic with period N, then so is y[n], since shifting x[n] or linearly combining x[n] with another periodic signal whose period is N always results in a periodic signal with period N.
 - Also, if:

$$x[n] \Leftrightarrow a_k$$

 Then the Fourier coefficients corresponding to the first difference of x[n] may be expressed as:

$$x[n]-x[n-1] \Leftrightarrow \left(1-e^{-jk(2\pi/N)}\right)a_k$$

Properties of Continuous-Time Fourier Series

Property	Periodic Signal	Fourier Series Coefficients
	x(t) Periodic with period T and	a_k
	$y(t)$ fundamenta 1 frequency $\omega_0 = 2\pi / T$	b_k
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting	$x(t-t_0)$	$e^{-jk\omega_0 t}a_k$
Frequency shifting	$e^{jM\omega_0t}x(t)$	a_{k-M}
Conjugation	$x^*(t)$	a*k
Time Reversal	x(-t)	a_{-k}
Time Scaling	$x(\alpha t)$, $\alpha > 0$ (Periodic with period T/α)	a_{k}
Periodic Convolution	$\int_T x(\tau) y(t-\tau) d\tau$	Ta_kb_k
Multiplication	x(t)y(t)	$\sum_{l=-\infty}^{\infty} a_l b_{k-l}$
Differentiation	$\frac{dx(t)}{dt}$	$\sum_{l=-\infty}^{\infty} a_l b_{k-l}$ $jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
Integration	$\int_{-\infty}^{t} x(t)dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$

Properties of Continuous-Time Fourier Series (cont.)

Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} a_k = a^*_{-k} \\ \operatorname{Re}\{a_k\} = \operatorname{Re}\{a_{-k}\} \\ \operatorname{Im}\{a_k\} = -\operatorname{Im}\{a_{-k}\} \\ a_k = a_{-k} \\ \angle a_k = -\angle a_{-k} \end{cases}$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$x(t) \text{ real and even}$ $x(t) \text{ real and odd}$ $\begin{cases} x_e(t) = Ev\{x(t)\} & [x(t) \text{ real}] \\ x_e(t) = Od\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and odd $\operatorname{Re}\{a_k\}$ $j\operatorname{Im}\{a_k\}$
	Parseval's Relation for Periodic Signals $\frac{1}{T} \int_{T} x(t) ^{2} dt = \sum_{k=-\infty}^{\infty} a_{k} ^{2}$	

Properties of Discrete-Time Fourier Series

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamenta 1 frequency $\omega_0 = 2\pi$	a_k Periodic with period N b_k
Linearity	Ax[n] + By[n]	$Aa_k + Bb_k$
Time Shifting	$x[n-n_0]$	$e^{-jk(2\pi/N)t}a_k$
Frequency shifting	$e^{jM(2\pi/N)n}x[n]$	a_{k-M}
Conjugation	x*[n]	$a*_{_{-k}}$

Properties of Discrete-Time Fourier Series (cont.)

Time Reversal	x[-n]	a_{-k}
Time Scaling	x = [n] - [x[n/m], if n is a multiple of n]	$\frac{1}{2}$ (viewed as periodic)
	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple} f \\ 0, & \text{if } n \text{ is a multiple} f \end{cases} $	$\left \begin{array}{c} \overline{m}^{a_k} \\ \end{array} \right $ with period mN $\left \begin{array}{c} \end{array} \right $
	(Periodic with period mN)	
Periodic Convolution	$\sum_{r=[N]} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{l=< N>} a_l b_{k-l}$
Differentiation	x[n]-x[n-1]	$(1-e^{-jk(2\pi/N)})a_k$
Integration	$\sum_{k=-\infty}^{n} x[k]$ (finite valued and periodic	$\left(\frac{1}{1-e^{-jk(2\pi/N)}}\right)a_k$
	only if $a_0 = 0$)	

Properties of Discrete-Time Fourier Series (cont.)

Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a^*_{-k} \\ \operatorname{Re}\{a_k\} = \operatorname{Re}\{a_{-k}\} \\ \operatorname{Im}\{a_k\} = -\operatorname{Im}\{a_{-k}\} \\ a_k = a_{-k} \\ \angle a_k = -\angle a_{-k} \end{cases}$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$x[n]$ real and even $x[n]$ real and odd $\begin{cases} x_e[n] = Ev\{x[n]\} & [x[n] real] \\ x_e[n] = Od\{x[n]\} & [x[n] real] \end{cases}$	a_k real and even a_k purely imaginary and odd $\operatorname{Re}\{a_k\}$ $j\operatorname{Im}\{a_k\}$
	Parseval's Relation for Periodic Signals $\frac{1}{T} \sum_{n=< N>} x[n] ^2 = \sum_{n=< N>} a_k ^2$	

Example #1

• Find C'_n in terms of C_n , where $x(t) = C_n$ and $y(t) = C'_{n}$.

$$(1): \mathcal{V}(t) = x(t+1) + x(t-1)$$

$$(2): \mathcal{V}(t) = e^{-j2\omega_0 t} . \mathcal{X}(t)$$

Fourier Series & LTI Systems

LTI System

• The response of a continuous-time LTI system with impulse response h(t) to a complex exponential signal e^{st} is the same complex exponential multiplied by a complex gain: $y(t) = H(s)e^{st}$

where

$$H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$$

- In particular, for s=j ω , the output is $y(t)=H(j\omega)e^{j\omega t}$.
- The complex functions H(s) and $H(j\omega)$ are called the system function (or transfer function) and the frequency response, respectively.

LTI System (cont.)

• By superposition, the output of an LTI system to a periodic signal represented by a Fourier series:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t} \quad is \quad given \quad by$$

$$y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$$

- That is, the Fourier series coefficients b_k of the periodic output y(t) are given by: $b_k = a_k H(jk\omega_0)$
- Similarly, for discrete time signals and systems, response h[n] to a complex exponential signal $e^{j\omega n}$ is the same complex exponential multiplied by a complex gain:

$$y[n] = H(jk\omega_0)e^{jk\omega_0 n}$$
where

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$$

Example #2

 Consider a causal LTI system whose i/p and o/p are related by following differential equation:

$$\frac{dy(t)}{dt} + 4y(t) = x(t)$$

• Find the o/p coefficient C'_n if i/p is $\cos 2\pi t + \sin 4\pi t$

Example #3

• x[n]=real and odd periodic signal. Where N=7 and $a_k=?$.

$$a_{15} = j$$
 , $a_{16} = 2j$, $a_{17} = 3j$

$$a_0 = ?$$
 , $a_{-1} = a_{-2} = a_{-3} = ?$

The End