
1.	 For a unit step function the value of the function should be: a) 0 for t < 0 and 1 for t ≥ 0 b) 0 for t < 0 and -1 for t ≥ 0 c) 0 everywhere except for the 0 itself d) None of the above 	Answer: (a)
2.	A system which is linear is said to obey the rules of:	
	a) Scaling	
	b) Additivity	
	c) Both scaling and additivity	
	d) None of the above	
		Answer: (c)
2	A time inversion taystom is a gystom whose output:	
3.		
	a) Increases with a delay in inputb) Remains same with a delay in input	
	c) Decreases with a delay in input	
	d) Vanishes with a delay in input	
	a) tanono tra a actay in input	Answer: (b)
4.	Signal is defined as:	
	a) A quantitative description of a physical phenomenon, event or the	-
	b) A function represents a physical quantity or variable containing th	e information
	about the behavior and nature of the phenomenon.	
	c) A device or a set of rules defining the functional relation between	the input and
	output. d) Both (a) and (b)	
	a) Both (a) and (b)	Answer: (d)
		` ,
5.	In a time shift operation, if $t_0 > 0$ then:	
	a) The time shift is known as advance.	
	b) The time shift is known as delay.	
	c) The signal is decimated.	
	d) None of the above.	
		Answer: (b)
6	If $0 < a < 1$, the time scale of the resultant signal is:	
••	a) Decimated.	
	b) Speedup.	
	c) Slowed down.	
	d) None of the above.	
		Answer: (c)

7. For the signal shown below, if we shift it with $t_0 = -1$, then the result will be:

0 0.5 1 t

Answer: (a)

- **8.** A system is said to be defined as non-causal, when:
 - a) The output at the present depends on the input at an earlier time.
 - b) The output at the present does not depend on the factor of time at all.
 - c) The output at the present depends on the input at a time instant in the future.
 - d) The output at the present depends on the input at the current time.

Answer: (c)

9.	a)b)c)	function $y[n] = x[n-1] - x[n-4]$ memoryless? The system is memoryless. The system needs to have memory, so it is with memory. The system is neither memoryless nor with memory. None of the above.	Answer: (b)
10.	In real	exponential function if $\alpha > 0$ then the graph will:	
		Decrease exponentially.	
	b)	Grows exponentially.	
	c)	Increase exponentially.	
	d)	Both (b) and (c).	
			Answer: (d)
11.	_	al x (t) is said to be power signal if:	
	,	$0 < P < \infty$ and $E = \infty$	
	-	0 < P < E and E = 0	
	,	$0 < P < \infty$ and $E = 0$	
	a)	None of the above	Answer: (a)
			Allswei . (a)
12.	The ur	nit impulse function is also known as:	
	a)	Dirac Delta function.	
	b)	Step function.	
	c)	Both (a) and (b).	
	d)	None of the above.	
			Answer: (a)
13.	A sign	al cannot be both an energy signal and a power signal.	
	a)	False.	
	b)	True.	
	c)	May be.	
	d)	None of the above.	Angway (b)
			Answer: (b)
14.	The di	screte-time unit impulse function δ [n] is defined as:	
	a)	$\delta[n] = \begin{cases} 0 & for n = 0 \\ 1 & for n \neq 0 \end{cases}$	
	h)	$\delta[n] = \begin{cases} 1 & for n = 0 \\ 0 & for n \neq 0 \end{cases}$	
	c)	$\delta[n] = \begin{cases} 1 & for n > 0 \\ 0 & for n < 0 \end{cases}$	

Answer: (b)

d) None of the above.

15.	The co	nvolution of x (t) and h (t) is defined by:
	a)	$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)dt$
		$y(t) = \int_{-\infty}^{\infty} [x(\tau) + h(t - \tau)] d\tau$
		$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$
		None of the above.
	/	Answer: (c)
16.	If the	output is a scaled version of its input, then the input function is called as:
	a)	Eigenvalue of the system.
		Eigenfunction of the system.
		Both (a) and (b).
	d)	None of the above.
		Answer: (b)
17.	Memo	ry in a discrete time system is analog if:
		Energy storage in a continuous time system.
	b)	Memory in a continuous time system.
	c)	Sampled memory of a continuous time LTI system.
	d)	None of the above.
		Answer: (a)
18.	The sy	stem $y(t) = x(t) + \frac{1}{3}x(t-3)$ is:
	a)	Non-causal system.
	b)	Causal system.
	c)	Partly A and partly B.
	d)	None of the above.
		Answer: (b)
10	T.v.o.a	a_{n}
	ROC's	equences x_1 (n) and x_2 (n) are related by x_2 (n) = x_1 (-n). In the z-domain, their
		The same.
	b)	Reciprocal of each other.
	c)	Negative of each other.
	d)	None of the above.
	,	Answer: (b)

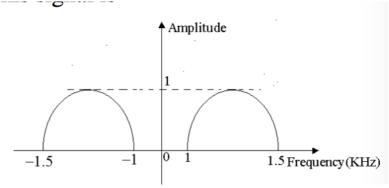
20. ____data have discrete states and take discrete values.

- a) Digital.
- b) Analog.
- **c)** (a) or (b).
- d) None of the above.

Answer: (a)

21. The Fourier transform (FT) of a function x [n] is $X(e^{j\omega})$. The FT of nx[n] will be:

a)
$$\frac{dx(t)}{dt}$$


b)
$$jfX(e^{j\omega})$$
.

c)
$$j \frac{dX(e^{j\omega})}{d\omega}$$
.

d) None of the above.

Answer: (c)

22. An analog signal has the spectrum shown below. The minimum sampling rate needed to completely represent this signal is:

- a) 1 KHz.
- **b)** 2 KHz.
- c) 3 KHz.
- d) None of the above.

Answer: (a)

23. The impulse response of a system is $h[n] = a^n u[n]$. The condition for the system to be BIBO stable is:

- a) "a" is real and positive.
- **b)** "a" is real and negative.
- c) |a| > 1.
- d) |a| < 1.

Answer: (d)

24. If R_1 is the region of convergence of x (n) and R_2 is the region of convergence of y (n), then the region of convergence of x (n) convoluted y (n) is:

a)
$$R_1 + R_2$$
.

b)
$$R_1 - R_2$$
.

c)
$$R_1 \cap R_2$$
.

d)
$$R_1 \cup R_2$$
.

Answer: (c)

25.	The continuous time system described by $y(t) = x(t^2)$ is:	
	a) Causal, linear and time varying.	
	b) Causal, non-linear and time varying.	
	c) Non-causal, non-linear and time-invariant.	
	d) Non-causal, linear and time-invariant.	
		Answer: (d)
26.	$x[n] = a^{ n }, a < 1 \text{ is:}$	
	a) An energy signal.	
	b) A power signal.	
	c) Neither energy nor a power signal.	
	d) None of the above.	
		Answer: (a)
27	A band pass signal extends from 1 KHz to 2 KHz. The minimum sampling	frequency
21.	needed to retain all information in the sampled signal is:	rrequeries
	a) 1 KHz.	
	b) 2 KHz.	
	c) 3 KHz.	
	d) None of the above.	
	a, remotioned and according	Answer: (b)
28.	The region of convergence of the z-transform of the signal $2^n u[n] - 3^n u[$	-n-1] is:
	a) $ z > 1$.	
	b) $ z < 1$.	
	c) $2 < z < 3$.	
	d) Does not exist.	
		Answer: (c)
29.	The number of possible regions of convergence of the function $\frac{(e^{-2}-2)z}{(z-e^{-2})(z-2)}$	· is:
	a) 1.	
	b) 3.	
	c) 2.	
	d) None of the above.	A (1)
		Answer: (b)
30	Given a unit step function u (t), its time-derivative is:	
<i>5</i> 0.	a) A unit impulse.	
	b) Another step function.	
	c) A unit ramp function.	
	d) None of the above.	
		Answer: (a)
		

31. The frequency response of a system with $h[n] = \delta[n] - \delta[n-1]$ is given	ı by:
a) $\delta(\omega) - \delta(\omega - 1)$.	
b) $u(\omega) - u(\omega - 1)$.	
c) $1 - e^{-j\omega}$.	
d) $1 - e^{j\omega}$.	
	Answer: (b)
32. z-transform converts convolution of time-signals to:	
a) Multiplication.	
b) Addition.	
c) Division.	
d) None of the above.	
	Answer: (a)
33. The Fourier transform of u [n] is:	
a) $\frac{1}{1-e^{-\omega}}$.	
$\mathbf{b)} \ \frac{1}{1 - e^{-j\omega}}.$	
c) $\frac{1}{j2\pi f}$.	
d) None of the above.	
	Answer: (d)
34. The system having input x [n] related to output y [n] as $y[n] = log_{10} x[n]$	1S:
a) Nonlinear, causal, not stable.	
b) Nonlinear, non-causal, not stable.c) Nonlinear, causal, stable.	
c) Nonlinear, causal, stable.d) None of the above.	
u) Trone of the above.	Answer: (c)
	<u> </u>
35. To obtain $x(4-2n)$ from the given signal $x[n]$, the following procedure (o	or priority)
rule is used for operations on the independent variable n:	,
a) Time scaling → Time shifting → Reflection	
b) Time shifting → Time scaling → Reflection	
c) Reflection → Time shifting → Time scaling.	
d) None of the above.	
	Answer: (b)
26 The suit star manner of the title 1	[m 4]:
36. The unit step-response of a system with impulse response $h[n] = \delta[n] - \delta$	$\lfloor n-1 \rfloor$ is:
a) $\delta[n]$.	
b) $\delta[n-1]$.	
c) $u[n]$.	

Answer: (a)

d) None of the above.

- 37. The ROC of the z-transform of the signal $x[n] = \{2,1,1,2\}$; n(0) = 1 is:
 - a) $All\ z$, $except\ z = 0$.
 - b) All z, except $z = \infty$.
 - c) All z, except z = 0 and $z = \infty$.
 - **d)** None of the above.

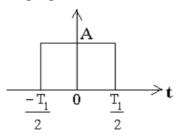
Answer: (c)

- **38.** A continuous-time periodic signal x (t), having a period T, is convolved with itself. The resulting signal is:
 - a) Not periodic.
 - **b)** Periodic having a period T.
 - c) Periodic having a period 2T.
 - d) None of the above.

Answer: (b)

- 39. If the Fourier series coefficients of a signal are periodic then the signal must be:
 - a) Continuous-time, periodic.
 - b) Continuous-time, non periodic.
 - c) Discrete-time, non periodic.
 - d) Discrete-time, periodic.

Answer: (d)


- 40. Let $H(e^{j\omega})$ be the frequency response of a discrete-time LTI system, and $H_1(e^{j\omega})$ be the frequency response of its inverse. Then:
 - a) $H(e^{j\omega})H_1(e^{j\omega})=1$.
 - b) $H(e^{j\omega})H_1(e^{j\omega}) = \delta(\omega)$.
 - c) $H(e^{j\omega}) * H_1(e^{j\omega}) = \delta(\omega)$.
 - d) None of the above.

Answer: (a)

- **41.** The transfer function of a stable system is $H(z) = \frac{1}{1 0.5z^{-1}} + \frac{1}{1 2z^{-1}}$. Its impulse response will be:
 - a) $(0.5)^n u[n] (2)^n u[n]$.
 - b) $-(0.5)^n u[n-1] + (2)^n u[n]$.
 - c) $(0.5)^n u[n] (2)^n u[-n-1]$.
 - d) None of the above.

Answer: (c)

42. The average power of the following signal is:

- a) $\frac{A^2}{2}$.
- **b)** A^2 .
- c) A^2T_1 .
- d) None of the above.

Answer: (c)

- **43.** Convolution is used to find:
 - a) The impulse response of an LTI system.
 - **b)** Frequency response of a system.
 - c) The phase response of a LTI system.
 - d) The time response of a LTI system.

Answer: (d)

- **44.** The Fourier transform of a rectangular pulse is:
 - a) Sinc function.
 - **b)** Another rectangular pulse.
 - c) Triangular pulse.
 - d) None of the above.

Answer: (a)

- **45.** The property of Fourier transform which states that the compression in time domain is equivalent to expansion in the frequency domain is:
 - a) Duality.
 - **b)** Frequency shifting.
 - c) Scaling.
 - d) None of the above.

Answer: (c)

- **46.** What is the Nyquist frequency for the signal $x(t) = 3\cos 50\pi t + 10\sin 300\pi t \cos 100\pi t$?
 - a) 100 Hz.
 - **b)** 300 Hz.
 - c) 60 Hz.
 - d) None of the above.

Answer: (b)

47. The fu	unction which has its Fourier transform, Laplace transform and Z-transfo	rm unity is:
a)	Gaussian.	
b)	Sinc.	
c)	Pulse.	
d)	Impulse.	
	<u> </u>	Answer: (d)
	-transform of $\delta[n-m]$ is:	
<i>'</i>	z^{-m} .	
	z^m .	
c)	1	
d)	None of the above.	
	<u> 4</u>	Answer: (a)
49. The an	rea under the curve $\int_{-\infty}^{\infty} \delta(t) dt$ is:	
a)	∞.	
b)		
	0.	
d)	None of the above.	
		Answer: (b)
50. For a	stable system:	
	z > 1.	
	z = 1.	
	z = 1. $ z < 1.$	
d)		
u)		Answer: (c)
	· · · · · · · · · · · · · · · · · · ·	<u> </u>
51. Let y	[n] denote the convolution of h [n] and g [n], where $h[n] = \left(\frac{1}{2}\right)^n u[n]$ are	nd g [n] is a
	I sequence. If $y[0] = 1$ and $y[1] = 1/2$, then g [1] equals:	
a)		
-	$\frac{1}{2}$.	
c)		
d)		
		Answer: (a)

52.	The in	put x(t) and output y (t) of a system are related as $y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) d\tau$. The
	system	
	a)	Time-invariant and stable.
	b)	Stable and not time-invariant.
	c)	Time-invariant and not stable.
	d)	None of the above.
53.	The pe	eriod of the signal $x(t) = 8 \sin \left(0.8\pi t + \frac{\pi}{4}\right)$ is:
		$0.4\pi s$.
	,	$0.8\pi s$.
	,	2.5s .
	,	None of the above.
	α,	Answer: (c)
54.		ade of three Linear Time Invariant systems is causal and unstable. From this, we
		de that:
	a) b)	Each system in the cascade is individually causal and unstable. At least one system is unstable and at least one system is causal.
	c)	At least one system is causal and all systems are unstable.
	d)	The majority is unstable and the majority is causal.
	uj	Answer: (b)
		(a)
55.	The z-	transform of a signal x [n] is given by $4z^{-3} + 3z^{-1} + 2 - 6z^2 + 2z^3$. It is applied
	to a sy	stem, with a transfer function $H(z) = 3z^{-1} - 2$. Let the output be y [n]. Which of
	the fol	lowing is true?
	a)	y[n] is non causal with finite support.
	b)	y[n] is causal with infinite support.
	c)	y[n] = 0; n > 3.
	d)	None of the above.
		Answer: (a)
= (Thomas	$ricd$ of the signal $u(t) = 10$ six $12\pi t + 4$ soc $12\pi t$ is:
50.	_	priod of the signal $x(t) = 10 \sin 12\pi t + 4 \cos 18\pi t$ is:
	a)	
	b)	<u> </u>
	c)	
	d)	- . 3.

Answer: (d)

c)	$2\pi\omega$.
d)	None of the above.
	Answer: (b)
58. Discre	te-time system is stable if the poles are:
a)	Within unit circle.
b)	Outside unit circle.
c)	On the unit circle.
d)	None of the above.
	Answer: (a)
59. The z-	transform of $-u[-n-1]$ is:
a)	$\frac{1}{1-z}$.
1)	1-z z
b)	$\frac{z}{1-z}$.
c)	$\frac{1}{1-z^{-1}}$.
	None of the above.
u)	Answer: (c)
60. A syst	em is said to be shift invariant only if:
a)	A shift in the input signal also results in the corresponding shift in the output.
b)	A shift in the input signal does not exhibit in the corresponding shift in the output.
c)	A shifting level does not vary in an input as well as output.
d)	None of the above.
	Answer: (a)

57. The Fourier transform of impulse function is:

a) $\delta(\omega)$. b) 1.