

Department of Electrical Engineering Program: B.E. (Electrical) Semester - Fall 2018 Solution EE313- Signal & Systems

Quiz – 3 Marks: 30

Handout Date: 11/01/2019

Question # 1:

Consider an LTI system for which the input x [n] and the output y[n] satisfy the linear constant coefficient difference equation:

$$y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]$$

Solution:

The use of the Fourier transform simplifies the analysis of the difference equation:

$$y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]$$

$$Y(e^{j\omega}) - \frac{1}{2}e^{-j\omega}Y(e^{j\omega}) = X(e^{j\omega}) + \frac{1}{3}e^{-j\omega}X(e^{j\omega})$$

$$Y(e^{j\omega})\left(1 - \frac{1}{2}e^{-j\omega}\right) = X(e^{j\omega})\left(1 + \frac{1}{3}e^{-j\omega}\right)$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1 + \frac{1}{3}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1}{1 - \frac{1}{2}e^{-j\omega}} + \frac{1}{3}\frac{e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$
Taking the inverse Fourier transform of $H(e^{j\omega})$, we get:

$$h[n] = \left(\frac{1}{2}\right)^n u[n] + \frac{1}{3}\left(\frac{1}{2}\right)^{n-1}u[n-1]$$

Question # 2:

Determine the Fourier series coefficients of the following signal:

$$x[n] = \cos\frac{\pi}{4}n$$

Solution:

$$x[n] = \cos\frac{\pi}{4}n$$

Using Euler's identity:

$$x[n] = \frac{e^{\frac{j\pi}{4}n}}{\frac{2}{4}} + \frac{e^{-\frac{j\pi}{4}n}}{\frac{2}{4}}$$

subscription would be a set of the set of the

The fundamental frequency, $\omega_0 =$

Where:

$$a_1 = \frac{1}{2}$$
 , $a_{-1} = \frac{1}{2}$

Otherwise $a_k = 0$.

Hence, the discrete Fourier series of x [n] is:

$$x[n] = \frac{e^{\frac{j\pi}{4}n}}{2} + \frac{e^{-\frac{j\pi}{4}n}}{2}$$

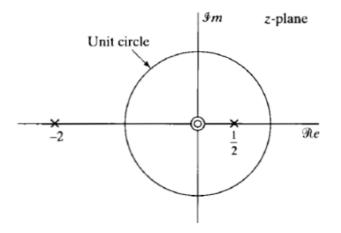
Question # 3:

a) Consider a system with system function:

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - 2z^{-1}}, |z| > 2$$

Find h [n] and also tell whether the system is Causal or not?

b) For the following pole-zero plot, determine that whether the system is both causal and stable or not. If not, then explain why?

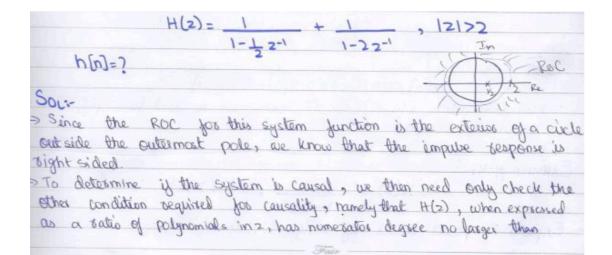


Solution:

a) Consider a system with system function:

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - 2z^{-1}}, |z| > 2$$

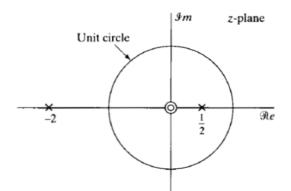
Find h [n] and also tell whether the system is Causal or not? **Solution:**



the denominator.

$$\Rightarrow$$
 For this example:
 $H(2) = \frac{1-2z^{-1} + 1 - \frac{1}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})} = \frac{2-\frac{5}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})}$
 $H(2) \Rightarrow \frac{2z^{2} - 5/2}{2} = \frac{2^{2} - 2}{2}$
 $z^{2} - \frac{5}{2}z^{-1}$
 \Rightarrow The numerator and denominate of $H(2)$ are both of degree two,
and consequently we can conclude that the system is causal.
 \Rightarrow this can also be verified by calculating the inverse transform
of $H(2)$.
 \Rightarrow Using pair 5 in table of standard z-transform pairs, the impu-
response of this system is,
 $h(n) = (\frac{1}{2})^{n} v(n) + (2)^{n} v(n)$.
 \Rightarrow Since $h(n) = 0$ for $n \neq 0$, we can confirm that the system is
causal.
Stability:-
 \Rightarrow The we consider the example #5 for checking stability of the system
we see that since the ROC associated is the togion $121>2$
which does not include the unit circle, the system is not stable.

b) For the following pole-zero plot, determine that whether the system is both causal and stable or not. If not, then explain why?



Solution:

A system is causal, as the ROC will extend outwards the outermost pole to infinity. A system is stable, as the unity circle is included in the ROC.

Good Luck