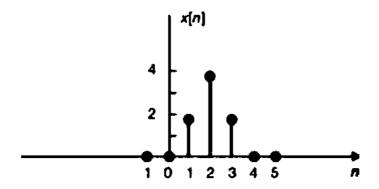
Name: Regd. No.

Course Title: Signal & Systems Course Code: EE-313

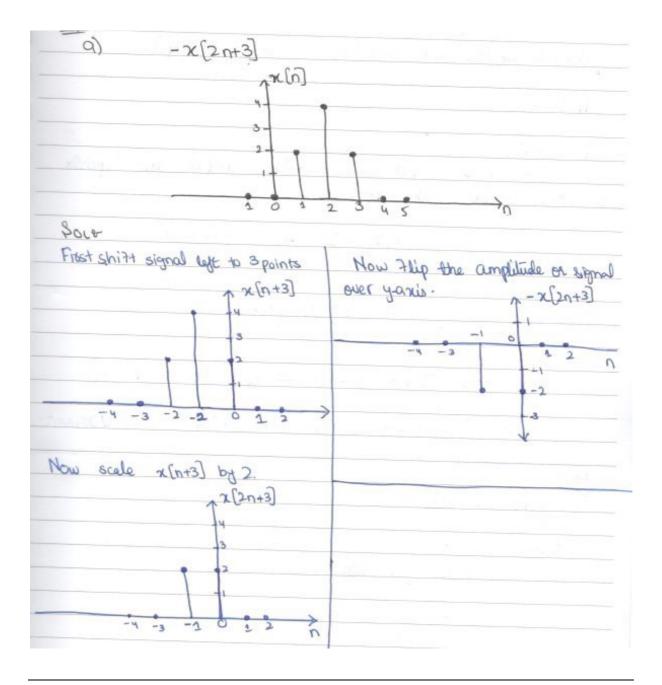
MID SEMESTER EXAMINATION - Fall 2018

Program: B.E. (Electrical)

Solution

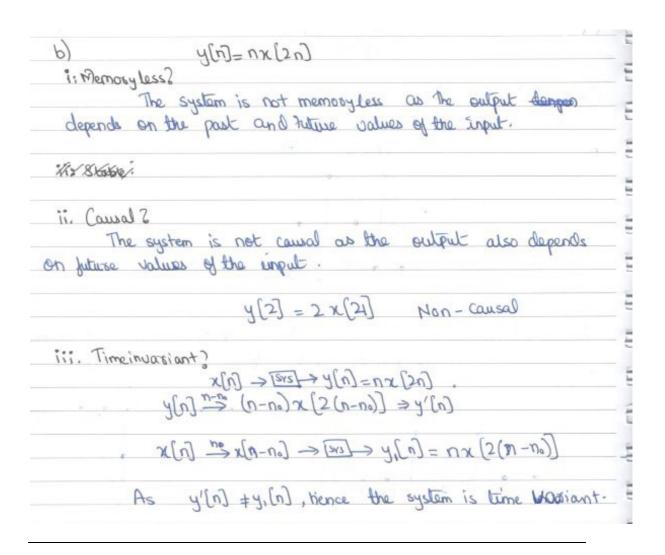

SECTION-II: 24 MARKS Time Allowed: 1hr 10 min

Attempt all questions. Marks are mentioned against the questions.


Note: Please attach the question paper at the end of the answer sheet.

Q1.

a) A discrete time signal is shown below. Sketch and label the signal -x[2n+3]:



(03 Marks)

- b) Determine whether the following system y[n] = nx[2n] is:
 - i. Memory-less
 - ii. Causal
 - iii. Time-invariant

(03 Marks)

Q2. Determine whether or not the following signals are periodic. If a signal is periodic, determine its fundamental period.

i.
$$x[n] = \sin\left(\frac{6\pi n}{7} + 1\right)$$

ii.
$$x[n] = e^{j\frac{3\pi}{5}(n+\frac{1}{5})}$$

(06 Marks)

$$Sola- x[n] = sin (sin +1)$$

$$Sola- x[n] = sin (sin +1)$$

$$W_0 = sin$$

$$T$$

$$T$$

$$T$$

$$T$$

$$W_0 = 2\pi$$

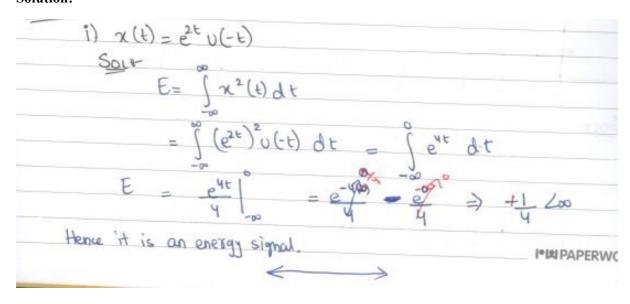
$$W_0 = 2\pi$$

$$\frac{N}{m} = \frac{2\pi}{3} \Rightarrow \frac{2\pi}{36\pi} \times 7$$

$$\frac{N}{m} = \frac{7}{3}$$

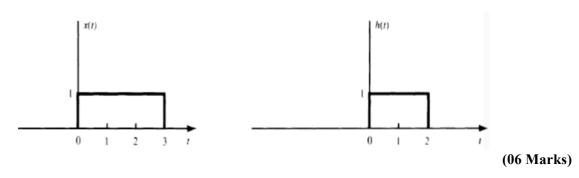
$$N=7, \text{ is the Fundamental period of } x[n].$$

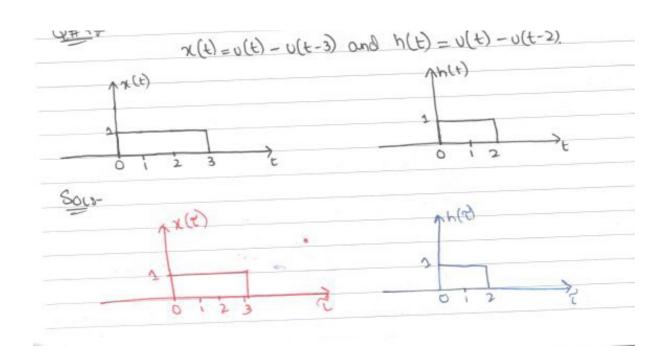
$$x[n] = e^{\frac{3\pi}{5}(n+\frac{1}{5})}$$

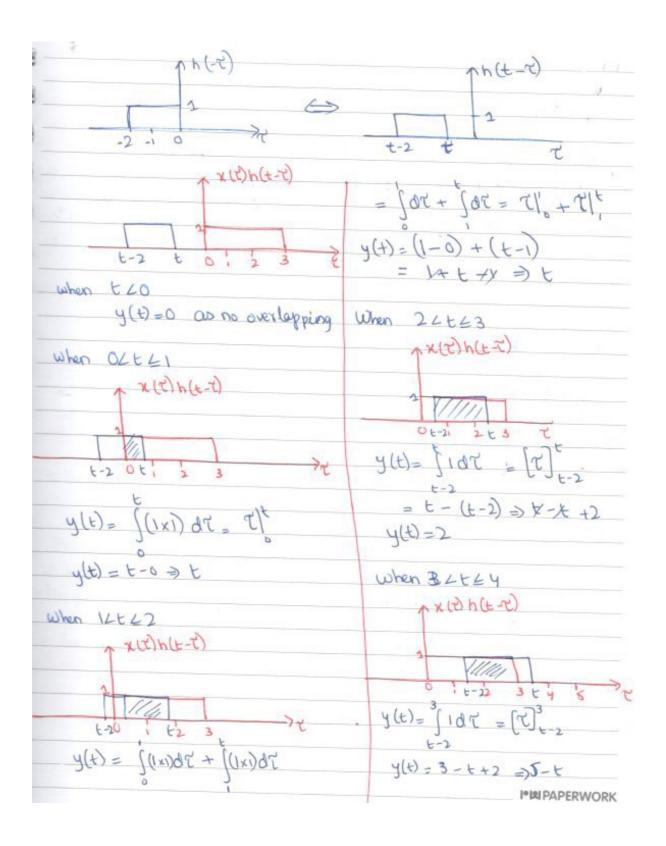

$$x[n] = e^{\frac{3\pi}{5}(n+\frac{1}$$

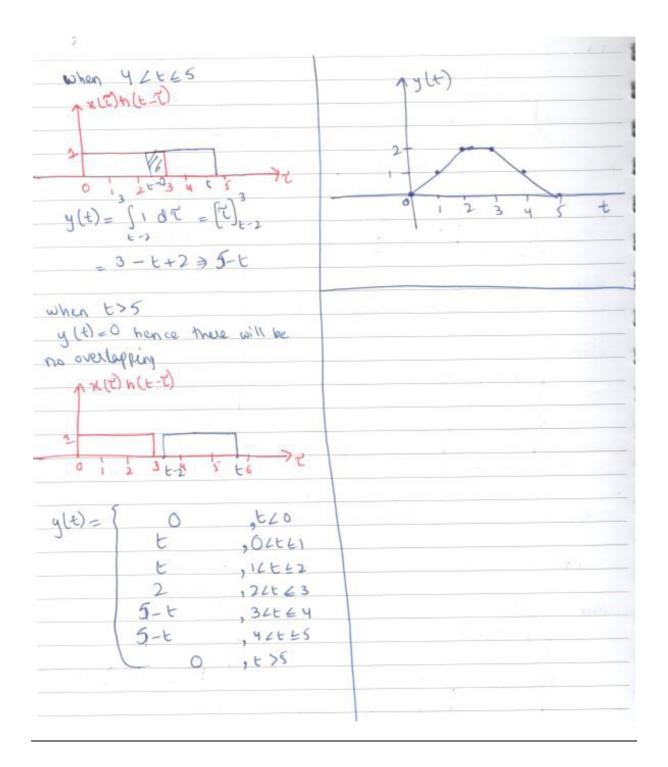
Q3. Classify the following signals into energy, power or neither. Determine energy and power.

i.
$$x(t) = e^{2t}u(-t)$$


ii.
$$x(t) = t u(t)$$


(06 Marks)




(ii) $\chi(t) = e^{-3|H|}$ Sold $P = \lim_{T \to \infty} \frac{1}{2T} \int \chi^{2}(t) dt$ $= \lim_{T \to \infty} \frac{1}{2T} \int (e^{-3|H|})^{2} dt$ $= \lim_{T \to \infty} \frac{1}{2T} \int e^{-6|H|} dt$ $= \lim_{T \to \infty} \frac{1}{2T} \left(-\frac{e^{6|H|}}{t} \right)^{-\frac{1}{2}}$ $P = \lim_{T \to \infty} \frac{1}{2T} \left(-\frac{e^{6T}}{t} + \frac{e^{6T}}{t} \right) \Rightarrow \infty$ After putting the lim the signal is neither power

Q4. Evaluate y(t) = x(t) * h(t), where x(t) = u(t) - u(t-3) and h(t) = u(t) - u(t-2) by using graphical method.

Formula Sheet

S. No.	Continuous-Time	Discrete-Time
1.	$Frequency: f = \frac{1}{T}$	Angular Frequency : $\omega = \frac{2\pi k}{N}$ Fundamental Period : $\frac{N}{k} = \frac{2\pi}{\omega}$
	Angular Frequency : $\omega = 2\pi f = \frac{2\pi}{T}$	
	Fundamental Period : $T = \frac{2\pi}{\omega}$	
	$Energy: E = \int_{-\infty}^{\infty} [x(t)]^2 dt$	$Energy: E = \sum_{n=-\infty}^{\infty} x[n] ^2$
2.	Power: $P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} [x(t)]^2 dt$	$Power: P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{i=1}^{N} x[n] ^2$
	If x (t) is periodic, then its average power becomes: $P = \frac{1}{T} \int_0^T [x(t)]^2 dt$	$n \rightarrow \infty$ $\geq N$ \uparrow 1 $n = -N$
	Convolution Integral	Convolution Sum _∞
3.	$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$	$y[n] = x[n] * h[n] = \sum_{k=-\infty} x[k]h[n-k]$