Regd. No.

Course Title: Signal & Systems

Course Code: ETSS-314

FINAL TERM EXAMINATION – Spring 2018 Program: B-Tech (Electrical)

SECTION-II: 40 MARKS Time Allowed: 2hr 10 min

Attempt all questions. Marks are mentioned against the questions. Note: Please attach the question paper at the end of the answer sheet.

Q2.

a) Find the Fourier Series Coefficients of the following signal:

$$x[n] = sin(\omega_0 n), where \ \omega_0 = \frac{2\pi}{N}$$

(05 Marks)

b) Evaluate y[n] = x[n] * h[n]. Using Graphical Method.

(08 Marks)

Q3.

a) Consider a discrete-time LTI system with impulse response:

$$h[n] = \left(\frac{1}{2}\right)^n u[n]$$

Use the Fourier transforms to determine the response y [n] to the given input:

$$x[n] = \left(\frac{3}{4}\right)^n u[n]$$

(08 Marks)

b) Consider the linear constant coefficient difference equation:

$$y[n] - \frac{1}{4}y[n-1] = x[n]$$

Which describes a linear, time-invariant system initially at rest. Determine $H(e^{j\omega})$.

(06 Marks)

Q4.

a) Determine the z-transform (including the ROC) of the following sequences. Also sketch the pole-zero plots and indicate the ROC on your sketch:

$$\left(\frac{1}{4}\right)^n u[n]$$

(05 Marks)

b) Using the partial fraction expansion, determine the sequence x [n] that goes with the following z-transform:

$$X(z) = \frac{3z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

(08 Marks)

Formula Sheet

S. No.	Continuous-Time	Discrete-Time	
1.	Frequency : $f = \frac{1}{T}$		
	Angular Frequency : $\omega = 2\pi f = \frac{2\pi}{T}$ or f	Angular Frequency : $\omega = \frac{2\pi k}{N}$	
	$=\frac{\omega}{2\pi}$	Fundamental Period : $\frac{N}{k} = \frac{2\pi}{\omega}$	
	Fundamental Period : $T = \frac{2\pi}{\omega}$		
2.	Convolution Integral $_{\infty}$	$\operatorname{Convolution}_{\infty} \operatorname{Sum}_{\infty}$	
	$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$	$y[n] = x[n] * h[n] = \sum_{k=-\infty} x[k]h[n-k]$	
	Fourier Series	Fourier Series	
	$x(t) = \sum_{k=-\infty} a_k e^{jk\omega_0 t}$, Synthesis Equation	$x[n] = \sum_{k=\langle N angle} a_k e^{jk\omega_0 n}$, Synthesis Equation	
3.	$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt , Analysis Equation$	$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$, Analysis Equation	

Nyquist Rate : $F_N = 2F_{max}$

Properties of the Discrete Time Fourier Transform

Non-periodic signal	Fourier transform
$x[n]=rac{1}{2\pi}\int_{2\pi}X(e^{j\omega})e^{j\omega n}d\omega$	$X(e^{j\omega}) \stackrel{ riangle}{=} \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$
$\left. egin{array}{c} x[n] \ y[n] \end{array} ight brace$	$\left. egin{array}{c} X(e^{j\omega}) \ Y(e^{j\omega}) \end{array} ight\} \left. egin{array}{c} ext{Periodic with} \ ext{period } 2\pi \end{array} ight.$
ax[n]+by[n]	$aX(e^{j\omega})+bY(e^{j\omega})$
$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
$egin{array}{l} x^*[n] \ x[-n] \end{array}$	$X^*(e^{j(-\omega)})\ X(e^{j(-\omega)})$
$x_{(m)}[n] = \left\{ egin{array}{cc} x[n/m], & n ext{ multiple of } m \ 0, & n ext{ not multiple av } m \end{array} ight.$	$X(e^{j(m\omega)})$
x[n] st y[n]	$X(e^{j\omega})Y(e^{j\omega})$
x[n]y[n]	$rac{1}{2\pi}{\int_{2\pi}}X(e^{j heta})Y(e^{j(\omega- heta)})d heta$
x[n]-x[n-1]	$\left(1-e^{j\omega} ight)X(e^{j\omega})$
$\sum_{k=-\infty}^n x[k]$	$rac{1}{1-e^j\omega}X(e^{j\omega})+\pi X(0)\sum_{k=-\infty}^\infty\delta(\omega-2\pi k)$
nx[n]	$jrac{d}{d\omega}X(e^{j\omega})$
If $x[n]$ is real	valued then
x[n]	$\left\{egin{array}{l} X(e^{j\omega})=X^*(e^{j(-\omega)})\ \Re\{X(e^{j\omega})\}=\Re\{X(e^{j(-\omega)})\}\ \Im\{X(e^{j\omega})\}=-\Im\{X(e^{j(-\omega)})\}\ ig X(e^{j\omega})ig =ig X(e^{j(-\omega)})ig \ rg\{X(e^{j\omega})\}=-rg\{X(e^{j(-\omega)})\}\end{array} ight.$
$egin{aligned} &x_e[n] = \mathcal{E}\{x[n]\}\ &x_o[n] = \mathcal{O}\{x[n]\} \end{aligned}$	$\Re\{X(e^{j\omega})\}\ j\Im\{X(e^{j\omega})\}$
Parsevals relation for \sim	non-periodic signals
$\sum_{n=-\infty}^\infty x[n] ^2 = rac{1}{2\pi}$	$\int_{2\pi} X(e^{j\omega}) ^2 d\omega$

Basic Pairs of Discrete Time Fourier Transform

x[n]	$X(e^{j\omega})$	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$\sum_{k=-\infty}^\infty \delta(n-kN)$	$rac{2\pi}{N}\sum_{k=-\infty}^{\infty}\delta\left(\omega-rac{2\pi k}{N} ight)$	
1	$2\pi\sum_{k=-\infty}^\infty \delta\left(\omega-2\pi k ight)$	
$e^{j\omega_o n}$	$2\pi\sum_{k=-\infty}^\infty \delta\left(\omega-\omega_o-2\pi k ight)$	
$\cos \omega_o n$	$\pi\sum_{k=-\infty}^{\infty}\left[\delta(\omega-\omega_o-2\pi k)+\delta(\omega+\omega_o-2\pi k) ight]$	
$\sin \omega_o n$	$rac{\pi}{j}\sum_{k=-\infty}^{\infty}\left[\delta(\omega-\omega_o-2\pi k)-\delta(\omega+\omega_o-2\pi k) ight]$	
u[n]	$rac{1}{1-e^{-j\omega}}+\pi\sum_{k=-\infty}^\infty\delta(\omega-2\pi k)$	
$a^n u(n), a < 1$	$rac{1}{1-ae^{-j\omega}}$	
$(n+1)a^nu[n], \hspace{0.3cm} a <1$	$\frac{1}{\left(1-ae^{-j\omega}\right)^2}$	
$\left \begin{array}{c} \frac{(n+m-1)!}{n!(m-1)!} a^n u[n], a < 1 \end{array} \right.$	$\frac{1}{(1-ae^{-j\omega})^m}$	
$rac{1}{1-a^2}a^{ n }, \ \ a <1$	$\frac{1}{1+a^2-2acos\omega}$	
$\left\{egin{array}{ll} 1, & n \leq N_1 \ 0, & N_1 < n \leq rac{N}{2} \ ext{period N} \end{array} ight.$	$2\pi\sum_{k=-\infty}^\infty a_k\delta\left(\omegarac{2\pi k}{N} ight)$	
$\left\{ egin{array}{cc} 1, & \left n ight \leq N_1 \ 0, & \left n ight > N_1 \end{array} ight.$	$\frac{\sin\omega\left(N_1+\frac{1}{2}\right)}{\sin\frac{\omega}{2}}$	
$\begin{cases} \frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc} \frac{Wn}{\pi} \\ 0 < W < \pi \end{cases}$	$\left\{egin{array}{ll} 1, & \omega \leq W \ 0, & W < \omega \leq \pi \ ext{period } 2\pi \end{array} ight.$	

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1-a^N z^{-N}}{1-az^{-1}}$	z > 0

Z-Transform Properties

signal	Z-transform	ROC
x[n]	$X(z) \stackrel{ riangle}{=} \sum_{n=-\infty}^\infty x[n] z^{-n}$	R_x
ax[n]+by[n]	aX(z)+bY(z)	Contains $R_x \cap R_y$
$x[n-n_0]$	$z^{-n_0}X(z)$	$R_x,$ except possible addition or deletion of the origin or ∞
$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
$x^*[n]$	$X^*(z^*)$	R_x
$x^*[-n]$	$X^*(1/z^*)$	$1/R_x$
x[n] st y[n]	X(z)Y(z)	Contains $R_x \cap R_y$
nx[n]	$-zrac{d}{dz}X(z)$	$R_x,$ except possible addition or deletion of the origin or ∞
$\Re\{x[n]\}$	$rac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x
$\Im\{x[n]\}$	$rac{1}{2j}[X(z)-X^*(z^*)]$	Contains R_x

Initial value theorem $x[n] = 0, \ n < 0 \quad \lim_{z \to \infty} X(z) = x[0]$