Calculus-II

Lecture #2

Separable Differential Equations

26th Feb, 2019

Concept of Solution

Solution of ODE

- \Box A function y=h(x) is called a solution of ODE y'=f(x,y), on some open interval $a < x < b$ if h(x) is defined and differentiable throughout the interval.
- The curve (graph) of h is called a solution curve.
- \Box Here, open interval $a < x < b$ means that the endpoints a and b are not regarded as points belonging to the interval.
- Also $a < x < b$ includes infinite intervals - $\infty < x < b$, $a < x <$ ∞, -∞ < x < ∞ as special cases.

 \blacksquare Verify that $y = c/x$ (c an arbitrary constant) is a solution of the ODE $xy' = -y$.

Solution of ODE (cont.)

- \blacksquare The ODE in the above example has a solution that contains an arbitrary constant c. Such a solution is known as general solution of the ODE.
- \blacksquare The solution that does not contain any arbitrary constant is known as particular solution of the ODE.

Initial Value Problem

- The unique solution i.e., a Particular solution is obtained from a general solution by an initial condition $y(x_0) = y_0$, with given values of x_0 and y_0 , that is used to determine a value of the arbitrary constant c.
- **□** Geometrically this condition means that the solution curve should pass through the point (x_0, y_0) in the xy-plane.
- An ODE with an initial condition is known as initial value problem.
- \blacksquare Thus, if the ODE is explicit, $y' = f(x,y)$, the initial value problem is of the form:

$$
y' = f(x, y), y(x_0) = y_0
$$

 \Box Solve the initial value problem:

$$
y' = \frac{dy}{dx} = 3y
$$
, $y = ce^{3x}$, $y(0) = 5.7$

 \Box Solve the initial value problem:

$$
y' = 0.5y
$$
, $y = ce^{0.5x}$, $y(2) = 2$

Singular Solution

 \Box An ODE may sometimes have an additional solution that cannot be obtained from the general solution is then called a singular solution.

The ODE
$$
(y')^2 - xy' + y = 0
$$
 is of the kind.

■ Show by differentiation and substitution that it has the general solution $y = cx - c^2$ and the singular solution $y = \frac{x}{4}$. 2 4

Separable ODEs

Separable ODE

□ An ODE is said to be separable if the variables can be separated e.g.,

$$
g(y)dy = f(x)dx
$$

 \blacksquare Let's say we have a first order differential equation reduced to the form:

$$
g(y)y' = f(x) \rightarrow (1)
$$

■ Then we can integrate on both sides with respect to x, obtaining: $\int g(y)y' dx = \int f(x) dx + c \rightarrow (2)$

Separable ODE (cont.)

■ On the left we can switch to y as the variable of integration. By calculus, y' dx = dy, so that:

$$
\int g(y) dy = \int f(x) dx + c \rightarrow (3)
$$

- If f and g are continuous functions, the integrals for above equation exist and by evaluating them we obtain the general solution of (equ. 1).
- \blacksquare This method of solving ODEs is called the method of separating variables and (equ. 1) is called a separable equation.
- In (equ. 3) the variables are now separated: x appears only on the right and y only on the left.

Solve the equation:

$$
2 ydy = \left(x^2 + 1\right)dx
$$

Reduction to Separable Form

Reduction to Separable Form

- \blacksquare There are certain ODE which seems non-separable but we can make them separable by transformation i.e., by introducing a new unknown function.
- \blacksquare Let's say we have an ODE: $y' = f(y/x)$
- \Box Here, the function f is any differentiable function of (y/x) such as $(y/x)^4$, sin (y/x) and so on.
- \Box Now in order to solve such an ODE we set $y/x = u$; thus,

 $y = ux$ and by product differentiation $y' = u'x + u'$

Reduction to Separable Form (cont.)

 \Box Now substitute y' and u in equation y' = f(y/x): $u'x + u = f(u)$ $u'x = f(u) - u$

 \Box Here f(u) - u \neq 0, this can be separated.

$$
x \frac{du}{dx} = f(u) - u
$$

\n
$$
xdu = [f(u) - u]dx
$$

\n
$$
\frac{du}{f(u) - u} = \frac{1}{x}dx
$$

Reduction to Separable Form (cont.)

 \blacksquare Hence both the variable are now separated.

O Solve:

$$
\frac{dy}{dx} + \frac{1}{2}y = \frac{3}{2}, \quad y(0) = 2
$$

O Solve:

$$
2xyy' = y^2 - x^2
$$

Exercise Problems

Problem #1

 \blacksquare Find a general solution. Show the steps of derivation.

$$
y' + \left(x + 2\right)y^2 = 0
$$

Problem #2

■ Solve the IVP. Show steps of derivation, beginning with the general solution:

$$
yy'+4x = 0, \quad y(0) = 3
$$

The End