Calculus-II

Lecture #4

Linear ODEs & Bernoulli's Equation

12th Mar, 2019

Linear ODEs

Linear ODEs

- A first order ODE is said to be linear if it can be written into the form: y' + p(x)y = r(x)
- This equation is linear in both unknown function y and its derivative i.e., y' = dy/dx. And p and r may be any given function of x.
- A first order ODE is said to be non-linear if it cannot be written in the above form.
- If the first term is f(x)y' instead of y, divide the equation by f(x) to get the standard form with y' as the first term.

For example: $y'\cos x + y\sin x = x$ is linear ODE but for its standard form we will divide $\cos x$ with the equation then:

$$y'\frac{\cos x}{\cos x} + y\frac{\sin x}{\cos x} = x\frac{1}{\cos x} \Rightarrow y' + y\tan x = x\sec x$$

Is now the standard form.

Homogeneous Linear ODE:

Lets suppose we want to solve y' + p(x) y = r(x) in some interval a< x <b, call it J and we begin with the simple case that r(x) is zero for all x in J.

Homogeneous Linear ODE:

And if we say that c=0 then we obtain trivial solution i-e., y(x)=0 for all x in that interval.

Non-Homogeneous Linear ODE:

- Now if we consider the case in which r(x)≠0 in the interval J, then the ODE is known as non-homogeneous.
- So in that case linear equation has an integrating factor depending only on x.
- We can find the integrating factor by case 1 as we discussed in previous lecture.

Non-Homogeneous Linear ODE:

Separation and integration gives: $\frac{dF}{F} = pdx \Rightarrow \ln |F| = \int p \, dx$ Taking exponents on both sides we get out I.F: $F(x) = e^{\int p \, dx}$ $e^{\int p \, dx} \left[y' + py \right] = e^{\int p \, dx} r$ $\left(e^{\int p \, dx} y \right)' = e^{\int p \, dx} r$

 Non-Homogeneous Linear ODE:
 Now integrate w.r.t x: $e^{\int p dx} y = \int e^{\int p dx} r dx + c$ Divide equ. by $e^{\int p dx}$ we get: $y = e^{-h} (\int e^h r dx + c)$ $\therefore h = \int p dx$ $y(x) = e^{-h} \int e^h r dx + ce^{-h}$

Example #1

Solve the following ODE:

$$y' - y = e^{2x}$$

Example #2

Solve the following ODE:

$$y' + y \tan x = \sin 2x, \quad y(0) = 1$$

Bernoulli Equation

Reduction to Linear Form

- To transform a nonlinear ODE into linear ODE we use Bernoulli equation.
- A differential equation of the form $y' + p(x)y = g(x)y^a$ is called the Bernoulli's equation. Where a can be any real number.
- If a=0 or a=1, then the above equation is linear.
 Otherwise it is nonlinear.
- Then we set: $u(x) = [y(x)]^{1-a}$

Reduction to Linear Form (cont.)

We differentiate above equation and substitute y' from equ(1) gives:
u' = (1-a) y^{-a} y' = (1-a) y^{-a} (gy^a - py)
u' = (1-a) y^{-a} multiply it with main equation
u' = (1-a) y^{-a} y' + (1-a) y^{-a} p(x) y = (1-a) y^{-a} g(x) y^a
u' = (1-a) y^{-a} y' = (1-a) y^{-a} [gy^a - py]
Simplification gives:
u' = (1-a) [g - py^{1-a}]

Reduction to Linear Form (cont.)

U Where $y^{1-\alpha} = u$ on the right so we get the linear ODE:

$$u' = (1 - a)[g - pu]$$
$$u' + (1 - a)pu = (1 - a)g$$

Example #3

Solve the Bernoulli's equation known as the logistic equation:

$$y' = Ay - By^2$$

Problems

Problem #1

□ Solve the given ODE:

$$y' + 1.25 y = 5, y[0] = 6.6$$

Problem #2

□ Solve the given ODE:

$$y' = 5.7 y - 6.5 y^2$$

The End