Calculus-II

Lecture #4

Linear ODEs & Bernoulli's Equation

12th Mar, 2019

Linear ODEs

Linear ODEs

- A first order ODE is said to be linear if it can be written into the form: y' + $p(x)$ y = $r(x)$
- This equation is linear in both unknown function y and its derivative i.e., $y' = dy/dx$. And p and r may be any given function of x.
- ¤ A first order ODE is said to be non-linear if it cannot be written in the above form.
- \blacksquare If the first term is $f(x)y'$ instead of y, divide the equation by f(x) to get the standard form with y' as the first term.

 \Box For example: y' cos $x + y \sin x = x$ is linear ODE but for its standard form we will divide cos x with the equation then:

$$
y'\frac{\cos x}{\cos x} + y\frac{\sin x}{\cos x} = x\frac{1}{\cos x} \Rightarrow y' + y\tan x = x\sec x
$$

 \blacksquare Is now the standard form.

¤ **Homogeneous Linear ODE:**

 \blacksquare Lets suppose we want to solve $y' + p(x)$ $y = r(x)$ in some interval $a < x < b$, call it J and we begin with the simple case that r(x) is zero for all x in J.

¤ **Homogeneous Linear ODE:**

 \Box And if we say that c=0 then we obtain trivial solution i-e., $y(x)=0$ for all x in that interval.

¤ **Non-Homogeneous Linear ODE:**

- Now if we consider the case in which $r(x) \neq 0$ in the interval J, then the ODE is known as non-homogeneous.
- So in that case linear equation has an integrating factor depending only on x.
- We can find the integrating factor by case 1 as we discussed in previous lecture.

¤ **Non-Homogeneous Linear ODE:**

 \blacksquare Separation and integration gives: ■ Taking exponents on both sides we get out I.F: $\frac{dF}{F} = pdx \Rightarrow \ln |F| = \int p \, dx$ $F(x) = e$ *^p dx* ∫ $e^{\int p dx} \left[y' + py \right] = e$ *^p dx* ∫ *^r e* $\left(e^{\int p dx}y\right)^{'}$ $= e^{\int p dx} r$

¤ **Non-Homogeneous Linear ODE:** \Box Now integrate w.r.t x: \Box Divide equ. by $e^{\int p dx}$ we get: $e^{\int p dx} y = \int e^{\int p dx} r dx + c$ $y = e^{-h} \left(\int e^{h} r \, dx + c \right)$ ∴ $h = \int p \, dx$ $y(x) = e^{-h} \int e^{h} r \, dx + ce^{-h}$

Example #1

Solve the following ODE:

$$
y'-y=e^{2x}
$$

Example #2

Solve the following ODE:

$$
y' + y \tan x = \sin 2x, \quad y(0) = 1
$$

Bernoulli Equation

Reduction to Linear Form

- To transform a nonlinear ODE into linear ODE we use Bernoulli equation.
- \Box A differential equation of the form $y' + p(x)y = g(x)y^a$ is called the Bernoulli's equation. Where a can be any real number.
- \Box If a=0 or a=1, then the above equation is linear. Otherwise it is nonlinear.

Then we set: $u(x) = [y(x)]$ 1−*a*

Reduction to Linear Form (cont.)

■ We differentiate above equation and substitute y' from equ(1) gives: \blacksquare Simplification gives: *u* $y' = (1 - a) y^{-a} y' = (1 - a) y^{-a} (gy^{a} - py)$ *u* ʹ = (1−*^a*) *^y*−*^a multiply it with main equation u* $y' = (1-a) y^{-a} y' + (1-a) y^{-a} p(x) y = (1-a) y^{-a} g(x) y^{a}$ *u* $y' = (1 - a) y^{-a} y' = (1 - a) y^{-a} [gy^{a} - py]$ $u' = (1 - a) [g - py^{1-a}]$

Reduction to Linear Form (cont.)

D Where $y^{1-a} = u$ on the right so we get the linear ODE:

$$
u' = (1 - a) [g - pu]
$$

$$
u' + (1 - a) pu = (1 - a) g
$$

Example #3

Solve the Bernoulli's equation known as the logistic equation:

$$
y' = Ay - By^2
$$

Problems

Problem #1

Solve the given ODE:

$$
y' + 1.25y = 5
$$
, $y[0] = 6.6$

Problem #2

Solve the given ODE:

$$
y' = 5.7y - 6.5y^2
$$

The End