Calculus-II

Lecture #7

Homogeneous Linear ODEs

7th May, 2019

Homogeneous Linear ODEs with Constant Cofficients

ODEs with Constant Coefficients

■ Let's consider second order homogeneous linear ODEs whose coefficients a and b are constant:

$$
y'' + ay' + by = 0 \rightarrow (1)
$$

■ The solution of the first order linear ODE with constant coefficient k is: y'+ky=0, is an exponential function: $y = ce^{-kx}$

 \blacksquare Now let's try it as a solution of the function for equ: (1) $y = e^{\lambda x} \rightarrow (2)$

ODEs with Constant Coefficients (cont.)

$$
y' = \lambda e^{\lambda x}
$$
 and $y'' = \lambda^2 e^{\lambda x}$

 \Box Substitute in equ (1):

 $y'' + ay' + by = 0$ $\lambda^2 e^{\lambda x} + a\lambda e^{\lambda x} + be^{\lambda x} = 0$ $e^{\lambda x} (\lambda^2 + a\lambda + b) = 0$

- \blacksquare Hence if λ is a solution of the characteristic equation or auxiliary equation i.e., $\lambda^2 + a\lambda + b$
- \Box Then the exponential function in equ(2) is a solution of the ODE in equ (1).

ODEs with Constant Coefficients (cont.)

- \blacksquare From algebra the roots of the quadratic equation are: $\lambda_1 = \frac{1}{2}$ $\frac{1}{2} \left(-a + \sqrt{a^2 - 4b} \right), \quad \lambda_1 = \frac{1}{2} \left(-a - \sqrt{a^2 - 4b} \right)$
- \Box The derivation shows that $y_1 = e^{\lambda_1 x}$ and $y_2 = e^{\lambda_2 x}$ are solutions of equ (1).

\Box Solve:

$$
y'' - 5y' + 6y = 0
$$

Cases

- The quadratic equation may have three kinds of roots, depending on the sign of the discriminant $a^2 - 4b$, namely:
- \Box **Case I:** Two real roots if $a^2 4b > 0$.
- \Box **Case II:** A real double root if $a^2 4b = 0$.
- Case III: Complex Conjugate roots if a² 4b < 0.

Case I

■ A basis of solution of equ (1) on any interval is:

$$
y_1 = e^{\lambda_1 x} \quad \text{and} \quad y_2 = e^{\lambda_2 x}
$$

 \blacksquare Because y₁ and y₂ are defined for all x and their quotient is not constant. The corresponding general solution is:

$$
y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}
$$

 \Box Solve the initial value problem:

$$
y'' + y' - 2y = 0;
$$
 $y(0) = 4$, $y'(0) = -5$

Case II

- \blacksquare If the discriminant a^2 -4b is zero, then we get only one root, $\lambda = \lambda_1 = \lambda_2 = -a/2$, hence only one solution: $y_1 = e^{-(a/2)x}$
- \Box To obtain a second independent solution y_2 , we use the method of reduction of order.
- \blacksquare Setting $y_2=uy_1$, substituting this and its derivatives in equ (1) we have:

$$
(u''y_1 + 2u'y_1' + uy_1'') + a(u'y_1 + uy_1') + buy_1 = 0
$$

■ Collecting terms in u'', u', and u we obtain: $u''y_1 + u'\left(2y_1' + ay_1\right) + u\left(y_1'' + ay_1' + by_1\right) = 0$

Case II (cont.)

- \blacksquare The expression in the last parenthesis is zero, since y_1 is a solution of equ (1). The expression in the first parenthesis is zero too, since: $2y_1' = -ae^{-ax/2} = -ay_1$
- \blacksquare We are thus left with u''y₁=0. Hence u''=0.
- \blacksquare By two integrations, $U=C_1x+C_2$. To get a second independent solution $y_2=uy_1$, we can simply choose $c_1=1$ and c_2 =0 and take u=x.
- \blacksquare Then $y_2 = xy_1$. Since these solutions are proportional, they form a basis.

Case II (cont.)

■ Hence in the case of double root a basis of solution of equ (1) on any interval is:

$$
e^{-ax/2}, xe^{-ax/2}
$$

 \blacksquare The corresponding general solution is:

$$
y = \left(c_1 + c_2 x\right) e^{-ax/2}
$$

 \Box Solve the initial value problem:

$$
y'' + y' + 0.25y = 0;
$$
 $y(0) = 3$, $y'(0) = -3.5$

Case III

- \Box This case occurs if the discriminant a^2 4b of the characteristic equation is negative.
- \Box The roots are the complex $\lambda = -\frac{1}{2}a \pm i\omega$ that gives the complex solutions of the ODE. 2 *^a* ±*ⁱ*^ω
- \blacksquare However, we will show that we can obtain a basis of real solutions: $y_1 = e^{-ax/2} \cos \omega x$, $y_2 = e^{-ax/2} \sin \omega x$
- \Box Where $\omega^2 = b q^2/4$.

 \Box Hence a real general solution in Case III is: $y = e^{-ax/2} (A \cos wx + B \sin wx)$

 \Box Solve the initial value problem:

 $y'' + 0.4y' + 9.04y = 0$

Summary of Cases I-III

Derivation in Case III

- If we skip the systematic derivation of these real solutions i.e., $y_1 = e^{-ax/2} \cos \omega x$, $y_2 = e^{-ax/2} \sin \omega x$ by means of the complex exponential function e^z of a complex variable $z=r+it$.
- We write r+it and not x+iy because x and y occur in the ODE.
- \blacksquare The definition of e^z in terms of the real functions e^r , cos t and sin t is:

$$
e^z = e^{r+it} = e^r e^{it} \Rightarrow e^r \left(\cos t + i \sin t \right)
$$

Derivation in Case III (cont.)

- \Box For real z=r, hence t=0, cos $0 = 1$, sin $0 = 0$, we get the real exponential function e^r.
- $e^{z_1+z_2} = e^{z_1}e^{z_2}$ **also real and correct.**
- \Box If we use Maclaurin series of e^z with $z=$ it as well as $i^2=-1$, e^{3} =-I, i ⁴=1 ... etc and reorder the terms as shown:

$$
e^{it} = 1 + it + \frac{(it)^2}{2!} + \frac{(it)^3}{3!} + \frac{(it)^4}{4!} + \dots
$$

= $1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + i \left(t - \frac{t^3}{3!} + \frac{t^5}{5!} - \dots \right)$

Derivation in Case III (cont.)

- \Box e^{it}=cos t + I sin t also called Euler Formula.
- \Box Multiplying it with er gives:

$$
e^{z} = e^{r+it} = e^{r} e^{it} \Rightarrow e^{r} (\cos t + i \sin t)
$$

■ We note that $e^{-it} = cos(-t) + isin (-t) = cos t - i sin t$, so that by addition and subtraction we get:

$$
\cos t = \frac{1}{2} \Big(e^{it} + e^{-it} \Big), \quad \sin t = \frac{1}{2i} \Big(e^{it} - e^{-it} \Big)
$$

 \Box In case III the radicand $a^2 - 4b$ is negative. Hence $4b - a^2$ is positive and using $\sqrt{-1}$ =I, we obtain:

Derivation in Case III (cont.)

$$
\frac{1}{2}\sqrt{a^2 - 4b} = \frac{1}{2}\sqrt{-\left(4b - a^2\right)} = \sqrt{-\left(b - \frac{1}{4}a^2\right)} = i\sqrt{b - \frac{1}{4}a^2} = i\omega
$$

\n**1** And: $\lambda_1 = \frac{1}{2}a + i\omega$ and $\lambda_2 = \frac{1}{2}a - i\omega$

 \blacksquare Using r = -(1/2)ax and t=wx, we thus obtain: $e^{\lambda_1 x} = e^{-(a/2)x + i\omega x} = e^{-(a/2)x} (\cos \omega x + i \sin \omega x)$ $e^{\lambda 2x} = e^{-(a/2)x - i\omega x} = e^{-(a/2)x} (\cos \omega x - i \sin \omega x)$

 \Box Solve the initial value problem:

$$
20y'' + 4y' + y = 0, \quad y(0) = 3.2, \quad y'(0) = 0
$$

 \Box Solve the following ODE:

$$
y'' - 6y' - 7y = 0
$$

The End