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Homogeneous Linear ODEs with 
Constant Cofficients 



ODEs with Constant Coefficients 

¤  Let’s consider second order homogeneous linear ODEs 
whose coefficients a and b are constant: 

 

¤  The solution of the first order linear ODE with constant 
coefficient k is: y’+ky=0, is an exponential function: 

¤  Now let’s try it as a solution of the function for equ: (1) 

ʹ́y +a ʹy +by = 0→ 1( )

y = ce −kx

y = e λx → 2( )



ODEs with Constant Coefficients 
(cont.) 

¤  Substitute in equ (1): 

¤  Hence if λ is a solution of the characteristic equation or 
auxiliary equation i.e.,  

¤  Then the exponential function in equ(2) is a solution of 
the ODE in equ (1).  

ʹy = λe λx and ʹ́y = λ 2e λx

ʹ́y +a ʹy +by = 0
λ 2e λx +aλe λx +be λx = 0
e λx λ 2 +aλ +b( ) = 0

λ 2 +aλ +b



ODEs with Constant Coefficients 
(cont.) 

¤  From algebra the roots of the quadratic equation are: 

¤  The derivation shows that             are 
solutions of equ (1). 

  

λ1 =
1
2
−a + a 2 − 4b( ), λ1 =

1
2
−a − a 2 − 4b( )

y1 = e
λ1x and y2 = e

λ2x



Example #1 

¤  Solve: 

ʹ́y −5 ʹy +6 y = 0



Cases 

¤  The quadratic equation may have three kinds of roots, 
depending on the sign of the discriminant a2 – 4b, 
namely: 

¤  Case I: Two real roots if a2 – 4b > 0. 

¤  Case II: A real double root if a2 – 4b =0. 

¤  Case III:  Complex Conjugate roots if a2 – 4b < 0. 



Case I 

¤  A basis of solution of equ (1) on any interval is: 

¤  Because y1 and y2 are defined for all x and their quotient 
is not constant. The corresponding general solution is:  

y1 = e
λ1x and y2 = e

λ2x

y = c1e
λ1x +c2e

λ2x



Example #2 

¤  Solve the initial value problem: 

ʹ́y + ʹy − 2 y = 0; y 0( ) = 4, ʹy 0( ) = −5



Case II 

¤  If the discriminant a2 - 4b is zero, then we get only one 
root, λ=λ1=λ2= -a/2, hence only one solution: y1= e-(a/2)x 

¤  To obtain a second independent solution y2, we use the 
method of reduction of order. 

¤  Setting y2=uy1, substituting this and its derivatives in equ 
(1) we have: 

 

¤  Collecting terms in u’’, u’, and u we obtain: 

ʹ́u y1 + 2 ʹu y1́ +uy1́́( )+a ʹu y1 +uy1́( )+buy1 = 0

ʹ́u y1 + ʹu 2 y1́ +ay1( )+u y1́́ +ay1́ +by1( ) = 0



Case II (cont.) 

¤  The expression in the last parenthesis is zero, since y1 is a 
solution of equ (1). The expression in the first parenthesis is 
zero too, since: 

¤  We are thus left with u’’y1=0. Hence u’’=0. 

¤  By two integrations, u=c1x+c2. To get a second 
independent solution y2=uy1, we can simply choose c1=1 
and c2=0 and take u=x.  

¤  Then y2=xy1. Since these solutions are proportional, they 
form a basis.  

2 y1́ = −ae
−ax /2 = −ay1



Case II (cont.) 

¤  Hence in the case of double root a basis of solution of 
equ (1) on any interval is: 

¤  The corresponding general solution is: 

e −ax /2 ,xe −ax /2

y = c1 +c2x( )e −ax /2



Example #3 

¤  Solve the initial value problem: 

ʹ́y + ʹy +0.25y = 0; y 0( ) = 3, ʹy 0( ) = −3.5



Case III 

¤  This case occurs if the discriminant a2 – 4b of the 
characteristic equation is negative.  

¤  The roots are the complex        that gives the 
complex solutions of the ODE.  

¤  However, we will show that we can obtain a basis of real 
solutions: 

¤  Where ω2= b – a21/4 . 

¤  Hence a real general solution in Case III is: 

λ = −
1
2
a ± iω

y1 = e
−ax /2 cosωx , y2 = e

−ax /2 sinωx

y = e −ax /2 A coswx + B sinwx( )



Example #4 

¤  Solve the initial value problem: 

ʹ́y +0.4 ʹy +9.04 y = 0



Summary of Cases I-III 



Derivation in Case III 

¤  If we skip the systematic derivation of these real solutions 
i.e.,          by means of the 
complex exponential function ez of a complex variable 
z=r+it. 

¤  We write r+it and not x+iy because x and y occur in the 
ODE.  

¤  The definition of ez in terms of the real functions er, cos t 
and sin t is:   

y1 = e
−ax /2 cosωx , y2 = e

−ax /2 sinωx

e z = e r+it = e re it ⇒ e r cost + i sin t( )



Derivation in Case III (cont.) 

¤  For real z=r, hence t=0, cos 0 =1, sin 0 =0, we get the real 
exponential function er. 

¤     also real and correct. 

¤  If we use Maclaurin series of ez with z=it as well as i2=-1, 
e3=-I, i4=1 ….etc and reorder the terms as shown: 

e z1+z2 = e z1e z2

e it =1+ it +
it( )

2

2!
+
it( )

3

3!
+
it( )

4

4!
+ ......

=1− t
2

2!
+
t 4

4!
+ ....+ i t − t

3

3!
+
t 5

5!
− .......

⎛

⎝
⎜

⎞

⎠
⎟



Derivation in Case III (cont.) 

¤  eit=cos t + I sin t also called Euler Formula. 

¤  Multiplying it with er gives: 

¤  We note that e-it = cos(-t) + isin (-t)=cos t – i sin t, so that by 
addition and subtraction we get: 

¤  In case III the radicand a2 – 4b is negative. Hence 4b – a2 
is positive and using √-1=I, we obtain: 

e z = e r+it = e re it ⇒ e r cost + i sin t( )

cost = 1
2
e it +e −it( ), sin t = 12i e

it −e −it( )



Derivation in Case III (cont.) 

¤  And: 

¤  Using r = -(1/2)ax and t=ωx, we thus obtain:  

1
2
a 2 − 4b = 1

2
− 4b −a 2( ) = − b − 1

4
a 2

⎛

⎝
⎜

⎞

⎠
⎟ = i b −

1
4
a 2 = iω

λ1 =
1
2
a + iω and λ2 =

1
2
a − iω

e λ1x = e − a /2( )x+iωx = e − a /2( )x cosωx + i sinωx( )
e λ2x = e − a /2( )x−iωx = e − a /2( )x cosωx − i sinωx( )



Example #5 

¤  Solve the initial value problem: 

20 ʹ́y + 4 ʹy + y = 0, y 0( ) = 3.2, ʹy 0( ) = 0



Example #6 

¤  Solve the following ODE: 

ʹ́y −6 ʹy −7 y = 0



The End 


