Calculus-II

Lecture #7

Homogeneous Linear ODEs

7th May, 2019

Homogeneous Linear ODEs with Constant Cofficients

ODEs with Constant Coefficients

Let's consider second order homogeneous linear ODEs whose coefficients a and b are constant:

$$y'' + ay' + by = 0 \rightarrow (1)$$

■ The solution of the first order linear ODE with constant coefficient k is: y'+ky=0, is an exponential function: $y = ce^{-kx}$

Now let's try it as a solution of the function for equ: (1) $y = e^{\lambda x} \rightarrow (2)$

ODEs with Constant Coefficients (cont.)

$$y' = \lambda e^{\lambda x}$$
 and $y'' = \lambda^2 e^{\lambda x}$

Substitute in equ (1):

y'' + ay' + by = 0 $\lambda^{2}e^{\lambda x} + a\lambda e^{\lambda x} + be^{\lambda x} = 0$ $e^{\lambda x} (\lambda^{2} + a\lambda + b) = 0$

- Hence if λ is a solution of the characteristic equation or auxiliary equation i.e., $\lambda^2 + \alpha \lambda + b$
- Then the exponential function in equ(2) is a solution of the ODE in equ (1).

ODEs with Constant Coefficients (cont.)

- From algebra the roots of the quadratic equation are: $\lambda_1 = \frac{1}{2} \left(-a + \sqrt{a^2 - 4b} \right), \quad \lambda_1 = \frac{1}{2} \left(-a - \sqrt{a^2 - 4b} \right)$
- The derivation shows that $y_1 = e^{\lambda_1 x}$ and $y_2 = e^{\lambda_2 x}$ are solutions of equ (1).

□ Solve:

$$y'' - 5y' + 6y = 0$$

Cases

- The quadratic equation may have three kinds of roots, depending on the sign of the discriminant a² – 4b, namely:
- **Case I:** Two real roots if $a^2 4b > 0$.
- **Case II:** A real double root if $a^2 4b = 0$.
- **Case III:** Complex Conjugate roots if $a^2 4b < 0$.

Case I

A basis of solution of equ (1) on any interval is:

$$y_1 = e^{\lambda_1 x}$$
 and $y_2 = e^{\lambda_2 x}$

Because y₁ and y₂ are defined for all x and their quotient is not constant. The corresponding general solution is:

$$\mathcal{Y} = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

Solve the initial value problem:

$$y'' + y' - 2y = 0; \quad y(0) = 4, \quad y'(0) = -5$$

Case II

- If the discriminant a^2 4b is zero, then we get only one root, $\lambda = \lambda_1 = \lambda_2 = -a/2$, hence only one solution: $y_1 = e^{-(a/2)x}$
- To obtain a second independent solution y₂, we use the method of reduction of order.
- Setting y₂=uy₁, substituting this and its derivatives in equ (1) we have:

$$\left(u''y_{1} + 2u'y_{1}' + uy_{1}''\right) + a\left(u'y_{1} + uy_{1}'\right) + buy_{1} = 0$$

Collecting terms in u'', u', and u we obtain: $u''y_1 + u'\left(2y_1' + ay_1\right) + u\left(y_1'' + ay_1' + by_1\right) = 0$

Case II (cont.)

- The expression in the last parenthesis is zero, since y_1 is a solution of equ (1). The expression in the first parenthesis is zero too, since: $2y'_1 = -ae^{-ax/2} = -ay_1$
- □ We are thus left with $u''y_1=0$. Hence u''=0.
- By two integrations, u=c₁x+c₂. To get a second independent solution y₂=uy₁, we can simply choose c₁=1 and c₂=0 and take u=x.
- Then y₂=xy₁. Since these solutions are proportional, they form a basis.

Case II (cont.)

Hence in the case of double root a basis of solution of equ (1) on any interval is:

$$e^{-ax/2}, xe^{-ax/2}$$

The corresponding general solution is:

$$\mathcal{Y} = \left(C_1 + C_2 x\right) e^{-ax/2}$$

Solve the initial value problem:

$$y'' + y' + 0.25 y = 0; \quad y(0) = 3, \quad y'(0) = -3.5$$

Case III

- This case occurs if the discriminant a² 4b of the characteristic equation is negative.
- The roots are the complex $\lambda = -\frac{1}{2}a \pm i\omega$ that gives the complex solutions of the ODE.
- However, we will show that we can obtain a basis of real solutions: $y_1 = e^{-ax/2} \cos \omega x, \quad y_2 = e^{-ax/2} \sin \omega x$
- Where $\omega^2 = b a^2 1/4$.
- Hence a real general solution in Case III is: $y = e^{-ax/2} (A \cos wx + B \sin wx)$

Solve the initial value problem:

y'' + 0.4 y' + 9.04 y = 0

Summary of Cases I-III

Case	Roots of (2)	Basis of (1)	General Solution of (1)
Ι	Distinct real λ_1, λ_2	$e^{\lambda_1 x}, e^{\lambda_2 x}$	$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
п	Real double root $\lambda = -\frac{1}{2}a$	$e^{-ax/2}$, $xe^{-ax/2}$	$y = (c_1 + c_2 x)e^{-ax/2}$
III	Complex conjugate $\lambda_1 = -\frac{1}{2}a + i\omega,$ $\lambda_2 = -\frac{1}{2}a - i\omega$	$e^{-ax/2}\cos\omega x$ $e^{-ax/2}\sin\omega x$	$y = e^{-\alpha x/2} (A \cos \omega x + B \sin \omega x)$

Derivation in Case III

- If we skip the systematic derivation of these real solutions i.e., $y_1 = e^{-ax/2} \cos \omega x$, $y_2 = e^{-ax/2} \sin \omega x$ by means of the complex exponential function e^z of a complex variable z=r+it.
- We write r+it and not x+iy because x and y occur in the ODE.
- The definition of e^z in terms of the real functions e^r, cos t and sin t is:

$$e^{z} = e^{r+it} = e^{r}e^{it} \Rightarrow e^{r}\left(\cos t + i\sin t\right)$$

Derivation in Case III (cont.)

- For real z=r, hence t=0, cos 0 =1, sin 0 =0, we get the real exponential function e^r.
- $\square e^{z_1+z_2} = e^{z_1}e^{z_2} \quad \text{also real and correct.}$
- If we use Maclaurin series of e^z with z=it as well as i²=-1, e³=-1, i⁴=1etc and reorder the terms as shown:

$$e^{it} = 1 + it + \frac{(it)^{2}}{2!} + \frac{(it)^{3}}{3!} + \frac{(it)^{4}}{4!} + \dots$$
$$= 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + i\left(t - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} - \dots\right)$$

Derivation in Case III (cont.)

- e^{it}=cos t + I sin t also called Euler Formula.
- Multiplying it with e^r gives:

$$e^{z} = e^{r+it} = e^{r}e^{it} \Rightarrow e^{r}\left(\cos t + i\sin t\right)$$

We note that e^{-it} = cos(-t) + isin (-t)=cos t - i sin t, so that by addition and subtraction we get:

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right), \quad \sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

In case III the radicand a² – 4b is negative. Hence 4b – a² is positive and using √-1=I, we obtain:

Derivation in Case III (cont.)

$$\frac{1}{2}\sqrt{a^2 - 4b} = \frac{1}{2}\sqrt{-(4b - a^2)} = \sqrt{-(b - \frac{1}{4}a^2)} = i\sqrt{b - \frac{1}{4}a^2} = i\omega$$

And: $\lambda_1 = \frac{1}{2}a + i\omega$ and $\lambda_2 = \frac{1}{2}a - i\omega$

Using $r = -(1/2) \alpha x$ and $t = \omega x$, we thus obtain: $e^{\lambda_1 x} = e^{-(a/2)x + i\omega x} = e^{-(a/2)x} (\cos \omega x + i \sin \omega x)$ $e^{\lambda_2 x} = e^{-(a/2)x - i\omega x} = e^{-(a/2)x} (\cos \omega x - i \sin \omega x)$

Solve the initial value problem:

$$20 y'' + 4 y' + y = 0, \quad y(0) = 3.2, \quad y'(0) = 0$$

Solve the following ODE:

$$\mathcal{Y}'' - 6\mathcal{Y}' - 7\mathcal{Y} = 0$$

The End