Calculus-II

Lecture #8

Differential Operators

14th May, 2019

Differential Operators

Differential Operators

- Operator is a transformation that transforms a function into another function.
- The Differential operator D is an operator which transforms a function into its derivative.
- In operator notation we write D=d/dx and Dy = y' = dy/dx.
- Similarly, for the higher derivatives we write D²y = D(Dy)= y'' and so on.
- For a homogeneous linear ODE y''+ay'+by=0 with constant coefficients we can now introduce the second-order differential operator: L= P(D) = D²+aD+bl
- Where I is the identity operator defined by Iy=y.

Differential Operators (cont.)

- Then we can write that ODE as: $Ly = P(D)y = (D^2 + aD + bI)y = 0$
- P suggests "polynomial" and L is a linear operator.
- Since: $(De^{\lambda})(x) = \lambda e^{\lambda x} \quad and \quad (D^{2}e^{\lambda})(x) = \lambda^{2}e^{\lambda x} \quad we \quad obtain$ $Le^{\lambda}(x) = P(D)e^{\lambda}(x) = (D^{2} + aD + bI)e^{\lambda}(x)$ $= (\lambda^{2} + a\lambda + b)e^{\lambda x} = P(\lambda)e^{\lambda x} = 0$

Differential Operators (cont.)

• $e^{\lambda \times}$ is a solution of the ODE if and only if λ is a solution of the characteristic equation P(λ)=0.

□ Factor $P(D) = D^2 - 3D - 40I$ and solve P(D)y=0.

Factor and solve the following:

$$\left(D^2 + 4.00D + 3.36I\right)y = 0$$

Euler-Cauchy Equations

Euler-Cauchy Equations

- Euler-Cauchy equations are ODEs of the form: $x^2y'' + axy' + by = 0$
- With given constants a and b and unknown function y(x).
- We substitute: y=x^m, y'=mx^{m-1}, y''=m(m-1)x^{m-2} into the above equation. This gives:

$$x^{2}m(m-1)x^{m-2} + axmx^{m-1} + bx^{m} = 0$$

We now see that y=x^m was a rather natural choice because we have obtained a common factor x^m.

Euler-Cauchy Equations (cont.)

Dropping it, we have the auxiliary equation: m(m-1)+am+b=0 or

$$m^2 + \left(a - 1\right)m + b = 0$$

Hence y = x^m is a solution of Euler-Cauchy equation if and only if m is a root of above equation.

Case I

- Real different roots m_1 and m_2 give two real solutions: $y_1(x) = x^{m_1}$ and $y_2(x) = x^{m_2}$
- These are linearly independent since their quotient is not constant.
- Hence they constitute a basis of solution of Euler-Cauchy equation for all x which they are real.

The corresponding general solution is:

$$\mathcal{Y} = C_1 x^{m_1} + C_2 x^{m_2}$$

Case II

- A real double root m₁=1/2(1-a) occurs if and only if b=1/4(a-1)².
- The Euler-Cauchy equation then has the form: $x^{2}y'' + axy' + \frac{1}{4}(1-a)^{2}y = 0$
- $y_1 = x^{(1-\alpha)/2}$
- To obtain a second linearly independent solution we apply the method of reduction of order.

Case II (cont.)

■ Hence for all x for which y₁ and y₂ are defined are real, a general solution is: $y = (c_1 + c_2 \ln x) x^m$

□ Solve:

$$x^2 y'' - 5xy' + 9y = 0$$

Case III

Complex conjugate roots are of minor practical importance.

 $x^2 y'' + 0.6 x y' + 16.04 y = 0$

□ Find a general solution. Show the details of your work.

$$x^2 y'' - 6 y = 0$$

□ Find the IVP. Show the details of your work.

$$x^{2}y'' - 4xy' + 6y = 0, \quad y(1) = 1, \quad y'(1) = 0$$

The End