

Islamabad Campus

Program: BSc Semester – Spring 2019

> MTCA-183 Calculus-II

Quiz – 1 Marks: 10

Marks: 10 Handout Date: 07/05/2019

Question #1:

Verify by substitution that $y_1 = e^{4x}$ and $y_2 = e^{2x}$ are solution of the ODE y'' - 6y' + 8y = 0, solve for the initial value problem y(0) = 3 and y'(0) = 2.

Solution:

Let's check:

$$y_1 = e^{4x}$$
 $y_1' = 4e^{4x}, y_1'' = 16e^{4x}$
 $y'' - 6y' + 8y = 0$
 $16e^{4x} - 6(4e^{4x}) + 8e^{4x} = 0$
 $16e^{4x} - 24e^{4x} + 8e^{4x} = 0$
 $0 = 0, hence\ proved.$

Now let's check:

$$y_{2} = e^{2x}$$

$$y'_{2} = 2e^{2x}, y''_{2} = 4e^{2x}$$

$$y'' - 6y' + 8y = 0$$

$$4e^{2x} - 6(2e^{2x}) + 8e^{2x} = 0$$

$$4e^{2x} - 12e^{2x} + 8e^{2x} = 0$$

$$0 = 0, hence proved.$$

0 = 0, hence proved.

As y_1 and y_2 are the solutions of the given ODE the general solution is:

$$y(x) = c_1 y_1 + c_2 y_2$$

$$y(x) = c_1 e^{4x} + c_2 e^{2x}$$

Now for particular solution:

$$y'(x) = 4c_1e^{4x} + 2c_2e^{2x}$$
$$y(0) = c_1e^0 + c_2e^0 \Rightarrow 3 = c_1 + c_2 \Rightarrow (1)$$
$$y'(0) = 4c_1e^0 + 2c_2e^0 \Rightarrow 2 = 4c_1 + 2c_2 \Rightarrow (2)$$

Now multiply eq (1) by 2 and add with eq (2):

$$2c_1 + 2c_2 = 6$$

 $\mp 4c_1 \mp 2c_2 = \mp 2$
 $-2c_1 = 4$
 $c_1 = -2$, put in equ (1)

$$c_1 + c_2 = 3 \Rightarrow -2 + c_2 = 3$$

 $c_2 = 5$

Hence:

$$y(x) = -2e^{4x} + 5e^{2x}$$